Created
February 5, 2022 13:10
-
-
Save arjun921/4a2cc287d10487f37b08bf9f3eacfc09 to your computer and use it in GitHub Desktop.
Get Confluent Kafka lag using Confluent Kafka Python Client
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import multiprocessing | |
import os | |
import time | |
from confluent_kafka import Consumer, TopicPartition | |
import ccloud_lib | |
def get_partition_lag(partition: int): | |
topic_name = "production" | |
CONFLUENT_CONFIG = { | |
"bootstrap.servers": os.getenv("KAFKA_HOST"), | |
"security.protocol": "SASL_SSL", | |
"sasl.mechanisms": "PLAIN", | |
"sasl.username": os.getenv("KAFKA_CONSUMER_KEY"), | |
"sasl.password": os.getenv("KAFKA_CONSUMER_SECRET"), | |
"schema.registry.url": "https://{{ SR_ENDPOINT }}", | |
"basic.auth.credentials.source": "USER_INFO", | |
"basic.auth.user.info": "{{ SR_API_KEY }}:{{ SR_API_SECRET }}", | |
} | |
conf = ccloud_lib.pop_schema_registry_params_from_config(CONFLUENT_CONFIG) | |
conf["group.id"] = "fluidstack-consumers" | |
conf["enable.auto.commit"] = False | |
consumer = Consumer(conf) | |
partition_lag = {} | |
print(f"Getting lag for topic: {topic_name}, partition: {partition}") | |
topic = TopicPartition(topic_name, partition) | |
consumer.assign([topic]) | |
committed = consumer.committed([topic])[0].offset | |
last_offset = consumer.get_watermark_offsets(topic)[1] | |
if committed < 0: | |
return {} | |
partition_lag[partition] = last_offset - committed | |
print(f"Partition: {partition}, lag:{last_offset-committed}") | |
consumer.close() | |
return partition_lag | |
if __name__ == "__main__": | |
topic_wise_lag = {} | |
paritition_count = 10 | |
t0 = time.perf_counter() | |
pool = multiprocessing.Pool(processes=paritition_count) | |
inputs = [x for x in range(paritition_count)] | |
outputs = pool.map(get_partition_lag, inputs) | |
print(f"Time taken: {time.perf_counter()-t0}") | |
for output in outputs: | |
topic_wise_lag.update(output) | |
max_lag = max(zip(topic_wise_lag.values(), topic_wise_lag.keys()))[1] | |
print(f"Max Lag: {topic_wise_lag[max_lag]}") | |
print(f"Total Unconsumed: {sum(topic_wise_lag.values())}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment