Skip to content

Instantly share code, notes, and snippets.

# gridsearch to find best regularization parameter
C_vect = np.logspace(-8, 5, 50)
# set the X and Y values.
X_tr = train_x[:1000,:]
Y_tr = train_y[:1000]
X_val = val_x[:1000,:]
Y_val = val_y[:1000]
# L1 regularization for C = 0.003
X = train_x[1:1000,:]
Y = train_y[1:1000]
# Specify the classifier. L1 penalty.
logreg_l1 = linear_model.LogisticRegression(penalty='l1', C=.003)
# train the classifier
logreg_l1.fit(X, Y)
# get the coefficients
# gridsearch to find best regularization parameter
C_vect = np.logspace(-8, 5, 50)
# set the X and Y values.
X_tr = train_x[:1000,:]
Y_tr = train_y[:1000]
X_val = val_x[:1000,:]
Y_val = val_y[:1000]
Classification report for classifier LogisticRegression(C=100000.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1, max_iter=100,
multi_class='ovr', penalty='l2', random_state=None,
solver='liblinear', tol=0.0001, verbose=0):
precision recall f1-score support
0 0.93 0.97 0.95 634
1 0.94 0.95 0.94 701
2 0.92 0.86 0.89 628
3 0.89 0.87 0.88 675
# Predict digits for the validation set
predicted = logreg.predict(val_x)
conf_matrix = metrics.confusion_matrix(val_y , predicted)
print("Classification report for classifier %s:\n%s\n"
% (logreg, metrics.classification_report(val_y, predicted)))
print("Confusion matrix:\n%s" % conf_matrix)
# Let's plot the confusion matrix, but get rid of the diagonal to better show where the problems are.
off_diag = conf_matrix*(1 - np.identity(10))
# for the classifier, set the X and Y values.
X = train_x
Y = train_y
# Set regularization parameter (C)
reg_param = 1e5
# Define the classifier
logreg = linear_model.LogisticRegression(C=reg_param)
# train the classifier
# Code adapted from http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
# originally due to Gaël Varoquaux
# Modified by Brad Deutsch
# License: BSD 3 clause
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.image as mpimg
Holy Nova
Blackwing Technician
Dark Cultist
Blackwing Corruptor
The Coin
.
.
.
Power Word: Shield
Blackwing Corruptor
Name
Entity ID
1 NaN
2 NaN
3 NaN
4 Anduin Wrynn
5 Lesser Heal
6 Twilight Guardian
.
.
Name
Entity ID
1 NaN
2 NaN
3 NaN
4 Anduin Wrynn
5 Lesser Heal
6 Twilight Guardian
7 NaN
8 NaN