Created
January 4, 2022 14:23
-
-
Save atennapel/0092b75b24d89acf198372f214ef1a8d to your computer and use it in GitHub Desktop.
Infinitary non-indexed datatype signatures
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
open import Agda.Builtin.Unit | |
open import Agda.Builtin.Sigma | |
open import Data.Product | |
data Ind : Set where | |
U : Ind | |
Pi : (A : Set) -> (A -> Ind) -> Ind | |
data Ty : Set where | |
U : Ty | |
Pi : (A : Set) -> (A -> Ty) -> Ty | |
PiInd : Ind -> Ty -> Ty | |
data Ctx : Set where | |
Nil : Ctx | |
Cons : Ty -> Ctx -> Ctx | |
data Var : Ctx -> Ty -> Set where | |
VZ : ∀ {C A} -> Var (Cons A C) A | |
VS : ∀ {C A B} -> Var C A -> Var (Cons B C) A | |
ElInd : Ind -> Set -> Set | |
ElInd U X = X | |
ElInd (Pi A B) X = (x : A) -> ElInd (B x) X | |
data Tm (C : Ctx) : Ty -> Set where | |
El : ∀ {A} -> Var C A -> Tm C A | |
App : ∀ {A B} -> Tm C (Pi A B) -> (a : A) -> Tm C (B a) | |
AppInd : ∀ {A B} -> Tm C (PiInd A B) -> ElInd A (Tm C U) -> Tm C B | |
Data : Ctx -> Set | |
Data C = Tm C U | |
ElimInd : ∀ {C} (P : Data C -> Set) (A : Ind) -> ElInd A (Data C) -> Set | |
ElimInd P U t = P t | |
ElimInd P (Pi A B) f = (x : A) -> ElimInd P (B x) (f x) | |
ElimTy : ∀ {C} (P : Data C -> Set) (A : Ty) -> Tm C A -> Set | |
ElimTy P U x = P x | |
ElimTy P (Pi A B) x = (a : A) -> ElimTy P (B a) (App x a) | |
ElimTy {C} P (PiInd A B) x = (a : ElInd A (Data C)) -> ElimInd P A a -> ElimTy P B (AppInd x a) | |
Elim : ∀ {C'} (P : Data C' -> Set) (C : Ctx) -> (∀ {A} -> Var C A -> Var C' A) -> Set | |
Elim P Nil _ = ⊤ | |
Elim P (Cons ty ctx) k = ElimTy P ty (El (k VZ)) × Elim P ctx (λ x -> k (VS x)) | |
Elim' : (C : Ctx) (P : Data C -> Set) -> Set | |
Elim' C P = Elim P C (λ x -> x) | |
elimVar : ∀ {C'} (P : Data C' -> Set) -> ∀ {C A} (v : Var C A) (k : ∀ {A} -> Var C A -> Var C' A) -> Elim P C k -> ElimTy P A (El (k v)) | |
elimVar P VZ k (p , _) = p | |
elimVar P (VS v) k (_ , ps) = elimVar P v (λ x -> (k (VS x))) ps | |
elimInd : ∀ {C} (P : Data C -> Set) -> (A : Ind) -> (f : ElInd A (Data C)) -> ((x : Data C) -> ElimTy P U x) -> ElimInd P A f | |
elimInd P U x ind = ind x | |
elimInd P (Pi A B) f ind x = elimInd P (B x) (f x) ind | |
{-# TERMINATING #-} | |
elimTm : ∀ {C} (P : Data C -> Set) (ps : Elim' C P) -> ∀ {A} (x : Tm C A) -> ElimTy P A x | |
elimTm P ps (El v) = elimVar P v (λ x -> x) ps | |
elimTm P ps (App t a) = elimTm P ps t a | |
elimTm P ps (AppInd {A} t a) = elimTm P ps t a (elimInd P A a (elimTm P ps)) -- I cannot erase A, this is bad! | |
elim : (C : Ctx) (P : Data C -> Set) (x : Data C) -> Elim' C P -> P x | |
elim C P x ps = elimTm P ps x | |
-- testing | |
UniCtx : Ctx | |
UniCtx = Cons U (Cons (Pi Set λ A -> PiInd (Pi A λ _ -> U) U) Nil) | |
Uni : Set | |
Uni = Data UniCtx | |
Unit : Uni | |
Unit = El VZ | |
UniPi : (A : Set) -> (A -> Uni) -> Uni | |
UniPi A B = AppInd (App (El (VS VZ)) A) B | |
indUni : (P : Uni -> Set) (unit : P Unit) (pi : (A : Set) (B : A -> Uni) -> ((x : A) -> P (B x)) -> P (UniPi A B)) (x : Uni) -> P x | |
indUni P unit pi x = elim _ P x (unit , pi , tt) | |
el : Uni -> Set | |
el = indUni (λ _ -> Set) ⊤ (λ A _ ind -> (x : A) -> ind x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment