Last active
January 4, 2022 17:50
-
-
Save atennapel/3080f5cfd240efc1cb3ef275e07fc85b to your computer and use it in GitHub Desktop.
Finitary non-indexed datatype signatures
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
open import Agda.Builtin.Unit | |
open import Agda.Builtin.Sigma | |
open import Data.Product | |
data Ty : Set where | |
U : Ty | |
Pi : (A : Set) -> (A -> Ty) -> Ty | |
PiInd : Ty -> Ty | |
data Ctx : Set where | |
Nil : Ctx | |
Cons : Ty -> Ctx -> Ctx | |
data Var : Ctx -> Ty -> Set where | |
VZ : ∀ {C A} -> Var (Cons A C) A | |
VS : ∀ {C A B} -> Var C A -> Var (Cons B C) A | |
data Tm (C : Ctx) : Ty -> Set where | |
El : ∀ {A} -> Var C A -> Tm C A | |
App : ∀ {A B} -> Tm C (Pi A B) -> (a : A) -> Tm C (B a) | |
AppInd : ∀ {B} -> Tm C (PiInd B) -> Tm C U -> Tm C B | |
Data : Ctx -> Set | |
Data C = Tm C U | |
ElimTy : ∀ {C} (P : Data C -> Set) (A : Ty) -> Tm C A -> Set | |
ElimTy P U x = P x | |
ElimTy P (Pi A B) x = (a : A) -> ElimTy P (B a) (App x a) | |
ElimTy {C} P (PiInd B) x = (a : Data C) -> P a -> ElimTy P B (AppInd x a) | |
Elim : ∀ {C'} (P : Data C' -> Set) (C : Ctx) -> (∀ {A} -> Var C A -> Var C' A) -> Set | |
Elim P Nil _ = ⊤ | |
Elim P (Cons ty ctx) k = ElimTy P ty (El (k VZ)) × Elim P ctx (λ x -> k (VS x)) | |
Elim' : (C : Ctx) (P : Data C -> Set) -> Set | |
Elim' C P = Elim P C (λ x -> x) | |
elimVar : ∀ {C'} (P : Data C' -> Set) -> ∀ {C A} (v : Var C A) (k : ∀ {A} -> Var C A -> Var C' A) -> Elim P C k -> ElimTy P A (El (k v)) | |
elimVar P VZ k (p , _) = p | |
elimVar P (VS v) k (_ , ps) = elimVar P v (λ x -> (k (VS x))) ps | |
elimTm : ∀ {C} (P : Data C -> Set) (ps : Elim' C P) -> ∀ {A} (x : Tm C A) -> ElimTy P A x | |
elimTm P ps (El v) = elimVar P v (λ x -> x) ps | |
elimTm P ps (App t a) = elimTm P ps t a | |
elimTm P ps (AppInd t a) = elimTm P ps t a (elimTm P ps a) | |
elim : (C : Ctx) (P : Data C -> Set) (x : Data C) -> Elim' C P -> P x | |
elim C P x ps = elimTm P ps x | |
-- testing | |
NatCtx : Ctx | |
NatCtx = Cons U (Cons (PiInd U) Nil) | |
Nat : Set | |
Nat = Data NatCtx | |
Z : Nat | |
Z = El VZ | |
S : Nat -> Nat | |
S n = AppInd (El (VS VZ)) n | |
indNat : (P : Nat -> Set) (z : P Z) (s : (m : Nat) -> P m -> P (S m)) (n : Nat) -> P n | |
indNat P z s n = elim _ P n (z , s , tt) | |
paraNat : ∀ {A} -> Nat -> A -> (Nat -> A -> A) -> A | |
paraNat {A} n z s = indNat (λ _ -> A) z s n | |
add : Nat -> Nat -> Nat | |
add a b = paraNat a b (λ _ -> S) | |
n1 = S Z | |
n2 = S (S Z) | |
n3 = S (S (S Z)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment