Last active
April 17, 2022 04:32
-
-
Save atrisovic/d9ae4600607739b095bf46567a5a677a to your computer and use it in GitHub Desktop.
whanhee
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import json | |
from simplejson import loads | |
def get_outcomes(): | |
""" Get and return ICD codes """"" | |
f = open('icd_codes.json') | |
outcomes_ = json.load(f) | |
f.close() | |
return loads(outcomes_[0]) | |
def read_admissions(): | |
admissions_ = pd.read_csv("admissions_2000.csv") | |
admissions_['ADATE'] = pd.to_datetime(admissions_['ADATE'], format='%d%b%Y') | |
admissions_['DDATE'] = pd.to_datetime(admissions_['DDATE'], format='%d%b%Y') | |
return admissions_ | |
def primary(row, outcome=None): | |
outcomes = get_outcomes() | |
if row["DIAG1"] in outcomes[outcome]["icd9"] and \ | |
row["DDATE"] < icd_date: | |
return 1 | |
if row["DIAG1"] in outcomes[outcome]["icd10"] and \ | |
row["DDATE"] >= icd_date: | |
return 1 | |
return 0 | |
def primary_secondary(row, outcome=None, secondary=False): | |
""" Get primary and secondary or secondary from DIAG1-10 """ | |
outcomes = get_outcomes() | |
start_number = 1 | |
if secondary: | |
# start from DIAG2 if secondary | |
start_number = 2 | |
diags = ["DIAG" + str(num) for num in np.arange( | |
start_number, 11)] | |
for diag in diags: | |
if row[diag] in outcomes[outcome]["icd9"] and \ | |
row["DDATE"] < icd_date: | |
return 1 | |
if row[diag] in outcomes[outcome]["icd10"] and \ | |
row["DDATE"] >= icd_date: | |
return 1 | |
return 0 | |
def simple(aki_primarysecondary): | |
""" if aki_primarysecondary is first diag then return 0; | |
if it's not, the outcome is first, hence return 1 """ | |
if aki_primarysecondary.iloc[0] == 1: | |
return 0 | |
return 1 | |
def get_first_hosp(df_): | |
""" returns a list 1 followed by 0s """ | |
if len(df_) == 1: | |
return 1 | |
if len(df_) == 2: | |
return [1, 0] | |
return [1]+[0 for i in range(len(df_)-1)] | |
outcomes = get_outcomes() | |
icd_date = pd.Timestamp(year=2015, month=10, day=1) | |
if __name__ == '__main__': | |
# import json | |
# print(json.dumps(outcomes, sort_keys=True, indent=4)) | |
admissions = read_admissions() | |
for outcome in outcomes: | |
admissions[outcome + "_primary"] = admissions.apply( | |
primary, axis=1, outcome=outcome) | |
admissions[outcome + "_primarysecondary"] = admissions.apply( | |
primary_secondary, axis=1, outcome=outcome) | |
admissions[outcome + "_secondary"] = admissions.apply( | |
primary_secondary, axis=1, outcome=outcome, secondary=True) | |
# ? drop all where outcome_primarysecondary == 0 | |
# ? drop diag cols | |
# aki secondary co_morbidity primary | |
co_morbidity = ["diabetes", "csd", "ihd", "pneumonia", "hf", "ami", "cerd", "uti"] | |
for d in co_morbidity: | |
admissions[d+'_primary_aki_secondary'] = admissions[ | |
[d+"_primary", "aki_secondary"]].min(axis=1) | |
# diabetes or ckd as prior hosp diagnosis | |
admissions['diabeteshosp_prior_aki'] = admissions[ | |
(admissions['aki_primarysecondary'] == 1) | (admissions['diabetes_primarysecondary'] == 1)].sort_values( | |
by='ADATE').groupby('QID')['aki_primarysecondary'].transform(simple) | |
admissions['ckdhosp_prior_aki'] = admissions[ | |
(admissions['aki_primarysecondary'] == 1) | (admissions['ckd_primarysecondary'] == 1)].sort_values( | |
by='ADATE').groupby('QID')['aki_primarysecondary'].transform(simple) | |
# correct primary and secondary so that only the first diag counts | |
for outcome in outcomes: | |
admissions[outcome + "_primary"] = \ | |
admissions[admissions[outcome + "_primary"] == 1].sort_values( | |
by=['ADATE']).groupby('QID')['ADATE'].transform(get_first_hosp) | |
admissions[outcome + "_secondary"] = \ | |
admissions[admissions[outcome + "_secondary"] == 1].sort_values( | |
by=['ADATE']).groupby('QID')['ADATE'].transform(get_first_hosp) | |
admissions.sort_values(by=['QID','ADATE']).to_csv("temp.csv", index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
New header:
QID,AGE,SEX,RACE,SSA_CNTY_CD,ADATE,DDATE,BENE_DOD,DIAG1,DIAG2,DIAG3,DIAG4,DIAG5,DIAG6,DIAG7,DIAG8,DIAG9,DIAG10,YEAR,all_kidney_primary,all_kidney_primarysecondary,all_kidney_secondary,ckd_primary,ckd_primarysecondary,ckd_secondary,aki_primary,aki_primarysecondary,aki_secondary,glomerular_primary,glomerular_primarysecondary,glomerular_secondary,diabetes_primary,diabetes_primarysecondary,diabetes_secondary,csd_primary,csd_primarysecondary,csd_secondary,ihd_primary,ihd_primarysecondary,ihd_secondary,pneumonia_primary,pneumonia_primarysecondary,pneumonia_secondary,hf_primary,hf_primarysecondary,hf_secondary,ami_primary,ami_primarysecondary,ami_secondary,cerd_primary,cerd_primarysecondary,cerd_secondary,uti_primary,uti_primarysecondary,uti_secondary,diabetes_primary_aki_secondary,csd_primary_aki_secondary,ihd_primary_aki_secondary,pneumonia_primary_aki_secondary,hf_primary_aki_secondary,ami_primary_aki_secondary,cerd_primary_aki_secondary,uti_primary_aki_secondary,diabeteshosp_prior_aki,ckdhosp_prior_aki