/Simple-CNN.py Secret
Created
August 27, 2018 20:24
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.layers import Dropout | |
from keras.layers import Flatten | |
from keras.layers.convolutional import Conv2D | |
from keras.layers.convolutional import MaxPooling2D | |
from keras.utils import np_utils | |
from keras import backend as K | |
K.set_image_dim_ordering('th') | |
# fix random seed for reproducibility | |
seed = 7 | |
numpy.random.seed(seed) | |
# load data | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
# reshape to be [samples][pixels][width][height] | |
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32') | |
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32') | |
# normalize inputs from 0-255 to 0-1 | |
X_train = X_train / 255 | |
X_test = X_test / 255 | |
# one hot encode outputs | |
y_train = np_utils.to_categorical(y_train) | |
y_test = np_utils.to_categorical(y_test) | |
num_classes = y_test.shape[1] | |
def baseline_model(): | |
# create model | |
model = Sequential() | |
model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(0.2)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dense(num_classes, activation='softmax')) | |
# Compile model | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
return model | |
# build the model | |
model = baseline_model() | |
# Fit the model | |
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) | |
# Final evaluation of the model | |
scores = model.evaluate(X_test, y_test, verbose=0) | |
print("CNN Error: %.2f%%" % (100-scores[1]*100)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment