Skip to content

Instantly share code, notes, and snippets.

@awni
Last active December 12, 2024 09:43
Show Gist options
  • Save awni/56369a90d03953e370f3964c826ed4b0 to your computer and use it in GitHub Desktop.
Save awni/56369a90d03953e370f3964c826ed4b0 to your computer and use it in GitHub Desktop.
Example CTC Decoder in Python
"""
Author: Awni Hannun
This is an example CTC decoder written in Python. The code is
intended to be a simple example and is not designed to be
especially efficient.
The algorithm is a prefix beam search for a model trained
with the CTC loss function.
For more details checkout either of these references:
https://distill.pub/2017/ctc/#inference
https://arxiv.org/abs/1408.2873
"""
import numpy as np
import math
import collections
NEG_INF = -float("inf")
def make_new_beam():
fn = lambda : (NEG_INF, NEG_INF)
return collections.defaultdict(fn)
def logsumexp(*args):
"""
Stable log sum exp.
"""
if all(a == NEG_INF for a in args):
return NEG_INF
a_max = max(args)
lsp = math.log(sum(math.exp(a - a_max)
for a in args))
return a_max + lsp
def decode(probs, beam_size=100, blank=0):
"""
Performs inference for the given output probabilities.
Arguments:
probs: The output probabilities (e.g. post-softmax) for each
time step. Should be an array of shape (time x output dim).
beam_size (int): Size of the beam to use during inference.
blank (int): Index of the CTC blank label.
Returns the output label sequence and the corresponding negative
log-likelihood estimated by the decoder.
"""
T, S = probs.shape
probs = np.log(probs)
# Elements in the beam are (prefix, (p_blank, p_no_blank))
# Initialize the beam with the empty sequence, a probability of
# 1 for ending in blank and zero for ending in non-blank
# (in log space).
beam = [(tuple(), (0.0, NEG_INF))]
for t in range(T): # Loop over time
# A default dictionary to store the next step candidates.
next_beam = make_new_beam()
for s in range(S): # Loop over vocab
p = probs[t, s]
# The variables p_b and p_nb are respectively the
# probabilities for the prefix given that it ends in a
# blank and does not end in a blank at this time step.
for prefix, (p_b, p_nb) in beam: # Loop over beam
# If we propose a blank the prefix doesn't change.
# Only the probability of ending in blank gets updated.
if s == blank:
n_p_b, n_p_nb = next_beam[prefix]
n_p_b = logsumexp(n_p_b, p_b + p, p_nb + p)
next_beam[prefix] = (n_p_b, n_p_nb)
continue
# Extend the prefix by the new character s and add it to
# the beam. Only the probability of not ending in blank
# gets updated.
end_t = prefix[-1] if prefix else None
n_prefix = prefix + (s,)
n_p_b, n_p_nb = next_beam[n_prefix]
if s != end_t:
n_p_nb = logsumexp(n_p_nb, p_b + p, p_nb + p)
else:
# We don't include the previous probability of not ending
# in blank (p_nb) if s is repeated at the end. The CTC
# algorithm merges characters not separated by a blank.
n_p_nb = logsumexp(n_p_nb, p_b + p)
# *NB* this would be a good place to include an LM score.
next_beam[n_prefix] = (n_p_b, n_p_nb)
# If s is repeated at the end we also update the unchanged
# prefix. This is the merging case.
if s == end_t:
n_p_b, n_p_nb = next_beam[prefix]
n_p_nb = logsumexp(n_p_nb, p_nb + p)
next_beam[prefix] = (n_p_b, n_p_nb)
# Sort and trim the beam before moving on to the
# next time-step.
beam = sorted(next_beam.items(),
key=lambda x : logsumexp(*x[1]),
reverse=True)
beam = beam[:beam_size]
best = beam[0]
return best[0], -logsumexp(*best[1])
if __name__ == "__main__":
np.random.seed(3)
time = 50
output_dim = 20
probs = np.random.rand(time, output_dim)
probs = probs / np.sum(probs, axis=1, keepdims=True)
labels, score = decode(probs)
print("Score {:.3f}".format(score))
@sigpro
Copy link

sigpro commented Jan 30, 2018

Thanks for your work,I read the paper(1408.2873),I think you made a mistake on algorithm 1 at page 5.

if c = ℓ end then
p nb (ℓ + ;x 1:t ) ← p(c;xt )pb (ℓ;x 1:t−1 )
p nb (ℓ ;x 1:t ) ← p(c;xt )pb (ℓ;x 1:t−1 )

is the

p nb (ℓ ;x 1:t ) ← p(c;xt )pb (ℓ;x 1:t−1 )

should be

p nb (ℓ ;x 1:t ) ← p(c;xt )pnb (ℓ;x 1:t−1 )

or maybe I misunderstand your algorithm. Thanks

@mrfox321
Copy link

mrfox321 commented Mar 2, 2018

I had a similar issue with the algo. I agree with your suggested correction, @sigpro

@geniki
Copy link

geniki commented Mar 3, 2018

I also agree @sigpro. You can also see it reflected in line 102 of this implementation of the algorithm (p_nb rather than p_b):

n_p_nb = logsumexp(n_p_nb, p_nb + p)

@edchengg
Copy link

agree @sigpro

@YuanEric88
Copy link

Thank you for your sharing. But I didn't find any place where the score are combined after I check out the code carefully. Anyone can point that out? @sigpro, @edchengg, @mrfox321

@viswanathgs
Copy link

@YuanEric88, that is handled at the implementation level - beam and next_beam are dictionaries with keys as prefix strings.

@hurrynarainProg
Copy link

Thanks for your work. I recently read your paper (1408.2873) and had two Qs in it.

  1. Same as what @sigpro mentioned above

Wondering if the counter part to the below section from paper is considered in the logic?
if ℓ + not in Aprev then
....
end if

by counterpart I mean :
if ℓ - not in Aprev then
pnb(ℓ ; x1:t) = p( ℓ _lastElement ; xt) * (pb( ℓ - ; x1:t−1) + pnb( ℓ - ; x1:t−1))
end if
Where,
l_lastElement refer to the last alphabet of l
ℓ - refer to one alphabet less in " ℓ "
for ex:
ℓ : "BAG"
ℓ - : "BA"
ℓ _lastElement : "G"

@awni
Copy link
Author

awni commented Jan 27, 2023

License for this code in case anyone needs it.

MIT License

Copyright (c) 2022 Awni Hannun

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment