Last active
April 24, 2017 13:06
-
-
Save ayman/7872ef0d472a1a2c037736af21b30cfe to your computer and use it in GitHub Desktop.
This is an extra annotated, commented illustration example from a Keras tutorial.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Tutorial from: http://bit.ly/2olREnv | |
import numpy | |
from keras.datasets import cifar10 | |
from matplotlib import pyplot | |
from scipy.misc import toimage | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.layers import Dropout | |
from keras.layers import Flatten | |
from keras.constraints import maxnorm | |
from keras.optimizers import SGD | |
from keras.layers.convolutional import Conv2D | |
from keras.layers.convolutional import MaxPooling2D | |
from keras.utils import np_utils | |
from keras import backend as K | |
######################################## | |
# Example: Simple CNN model for CIFAR-10 | |
# Set the column/row order | |
K.set_image_dim_ordering('th') | |
# load CFAIR-10 data | |
(X_train, y_train), (X_test, y_test) = cifar10.load_data() | |
# create a 3x3 grid plot of random images | |
for i in range(0, 9): | |
for j in numpy.random.choice(len(X_train), 9).tolist(): | |
pyplot.subplot(330 + 1 + i) | |
pyplot.imshow(toimage(X_train[j])) | |
pyplot.show() | |
# fix random seed for reproducibility | |
seed = 9 | |
numpy.random.seed(seed) | |
# normalize inputs from 0-255 to 0.0-1.0 | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train = X_train / 255.0 | |
X_test = X_test / 255.0 | |
# One hot encode outputs | |
y_train = np_utils.to_categorical(y_train) | |
y_test = np_utils.to_categorical(y_test) | |
num_classes = y_test.shape[1] | |
# Create the model | |
model = Sequential() | |
# Create 32 3x3 filters to move across the image, pad the image (border_mode), | |
# throw away negatives (activation), max weight is 3 (W_c) | |
# model.add(Convolution2D(32, 3, 3, | |
# input_shape=(3, 32, 32), | |
# border_mode='same', | |
# activation='relu', | |
# W_constraint=maxnorm(3))) | |
model.add(Conv2D(32, (3, 3), | |
activation="relu", | |
input_shape=(3, 32, 32), | |
padding="same", | |
kernel_constraint=maxnorm(3))) | |
# Randomly throw away 20% of the filters | |
model.add(Dropout(0.2)) | |
# Take the last layer and convolute again | |
# model.add(Convolution2D(32, 3, 3, | |
# activation='relu', | |
# border_mode='same', | |
# W_constraint=maxnorm(3)) | |
model.add(Conv2D(32, (3, 3), | |
activation="relu", | |
padding="same", | |
kernel_constraint=maxnorm(3))) | |
# Reduce resolution by taking the max value of a 2x2 across the image. | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
# Make a 1D vector ~8K here | |
model.add(Flatten()) | |
# Fully Conneted Layer (dense) 8kx512 (multiply output by fully connected | |
# layer (Wx+b) | |
# model.add(Dense(512, activation='relu', W_constraint=maxnorm(3))) | |
model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3))) | |
# Throw away 1/2 | |
model.add(Dropout(0.5)) | |
# Always last layer, fit to one hot vector | |
model.add(Dense(num_classes, activation='softmax')) | |
# Compile model | |
epochs = 25 | |
lrate = 0.01 | |
decay = lrate / epochs | |
# Specify back prop method (Stochastic Gradiant Decent) | |
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) | |
# Loss says how do i know how well I'm doing | |
model.compile(loss='categorical_crossentropy', | |
optimizer=sgd, | |
metrics=['accuracy']) | |
print(model.summary()) | |
# Fit the model | |
model.fit(X_train, | |
y_train, | |
validation_data=(X_test, y_test), | |
epochs=epochs, | |
batch_size=32) | |
# Final evaluation of the model | |
scores = model.evaluate(X_test, y_test, verbose=0) | |
print("Accuracy: %.2f%%" % (scores[1] * 100)) | |
################################################## | |
# Larger Convolutional Neural Network for CIFAR-10 | |
# Create the model | |
model = Sequential() | |
model.add(Conv2D(32, (3, 3), | |
input_shape=(3, 32, 32), | |
activation='relu', | |
border_mode='same')) | |
model.add(Dropout(0.2)) | |
model.add(Conv2D(32, (3, 3), activation='relu', border_mode='same')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(64, (3, 3), activation='relu', border_mode='same')) | |
model.add(Dropout(0.2)) | |
model.add(Conv2D(64, (3, 3), activation='relu', border_mode='same')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(128, (3, 3), activation='relu', border_mode='same')) | |
model.add(Dropout(0.2)) | |
model.add(Conv2D(128, (3, 3), activation='relu', border_mode='same')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Flatten()) | |
model.add(Dropout(0.2)) | |
model.add(Dense(1024, activation='relu', W_constraint=maxnorm(3))) | |
model.add(Dropout(0.2)) | |
model.add(Dense(512, activation='relu', W_constraint=maxnorm(3))) | |
model.add(Dropout(0.2)) | |
model.add(Dense(num_classes, activation='softmax')) | |
# Compile model | |
epochs = 25 | |
lrate = 0.01 | |
decay = lrate / epochs | |
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) | |
model.compile(loss='categorical_crossentropy', | |
optimizer=sgd, metrics=['accuracy']) | |
print(model.summary()) | |
numpy.random.seed(seed) | |
model.fit(X_train, y_train, | |
validation_data=(X_test, y_test), nb_epoch=epochs, batch_size=64) | |
# Final evaluation of the model | |
scores = model.evaluate(X_test, y_test, verbose=0) | |
print("Deep accuracy: %.2f%%" % (scores[1] * 100)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Now Keras 2.0 ready.