Skip to content

Instantly share code, notes, and snippets.

@azaika
Created August 19, 2017 14:12
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save azaika/74fd1b8fc35c9204dceefadb9391ce77 to your computer and use it in GitHub Desktop.
Save azaika/74fd1b8fc35c9204dceefadb9391ce77 to your computer and use it in GitHub Desktop.
TOMLReader実装案
/**
Copyright (c) 2014 Chase Geigle
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _CPPTOML_H_
#define _CPPTOML_H_
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <map>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#if __cplusplus > 201103L
#define CPPTOML_DEPRECATED(reason) [[deprecated(reason)]]
#elif defined(__clang__)
#define CPPTOML_DEPRECATED(reason) __attribute__((deprecated(reason)))
#elif defined(__GNUG__)
#define CPPTOML_DEPRECATED(reason) __attribute__((deprecated))
#elif defined(_MSC_VER)
#if _MSC_VER < 1910
#define CPPTOML_DEPRECATED(reason) __declspec(deprecated)
#else
#define CPPTOML_DEPRECATED(reason) [[deprecated(reason)]]
#endif
#endif
namespace cpptoml
{
class writer; // forward declaration
class base; // forward declaration
#if defined(CPPTOML_USE_MAP)
// a std::map will ensure that entries a sorted, albeit at a slight
// performance penalty relative to the (default) unordered_map
using string_to_base_map = std::map<std::string, std::shared_ptr<base>>;
#else
// by default an unordered_map is used for best performance as the
// toml specification does not require entries to be sorted
using string_to_base_map
= std::unordered_map<std::string, std::shared_ptr<base>>;
#endif
template <class T>
class option
{
public:
option() : empty_{true}
{
// nothing
}
option(T value) : empty_{false}, value_{std::move(value)}
{
// nothing
}
explicit operator bool() const
{
return !empty_;
}
const T& operator*() const
{
return value_;
}
const T* operator->() const
{
return &value_;
}
const T& value_or(const T& alternative) const
{
if (!empty_)
return value_;
return alternative;
}
private:
bool empty_;
T value_;
};
struct local_date
{
int year = 0;
int month = 0;
int day = 0;
};
struct local_time
{
int hour = 0;
int minute = 0;
int second = 0;
int microsecond = 0;
};
struct zone_offset
{
int hour_offset = 0;
int minute_offset = 0;
};
struct local_datetime : local_date, local_time
{
};
struct offset_datetime : local_datetime, zone_offset
{
static inline struct offset_datetime from_zoned(const struct tm& t)
{
offset_datetime dt;
dt.year = t.tm_year + 1900;
dt.month = t.tm_mon + 1;
dt.day = t.tm_mday;
dt.hour = t.tm_hour;
dt.minute = t.tm_min;
dt.second = t.tm_sec;
char buf[16];
strftime(buf, 16, "%z", &t);
int offset = std::stoi(buf);
dt.hour_offset = offset / 100;
dt.minute_offset = offset % 100;
return dt;
}
CPPTOML_DEPRECATED("from_local has been renamed to from_zoned")
static inline struct offset_datetime from_local(const struct tm& t)
{
return from_zoned(t);
}
static inline struct offset_datetime from_utc(const struct tm& t)
{
offset_datetime dt;
dt.year = t.tm_year + 1900;
dt.month = t.tm_mon + 1;
dt.day = t.tm_mday;
dt.hour = t.tm_hour;
dt.minute = t.tm_min;
dt.second = t.tm_sec;
return dt;
}
};
CPPTOML_DEPRECATED("datetime has been renamed to offset_datetime")
typedef offset_datetime datetime;
class fill_guard
{
public:
fill_guard(std::ostream& os) : os_(os), fill_{os.fill()}
{
// nothing
}
~fill_guard()
{
os_.fill(fill_);
}
private:
std::ostream& os_;
std::ostream::char_type fill_;
};
inline std::ostream& operator<<(std::ostream& os, const local_date& dt)
{
fill_guard g{os};
os.fill('0');
using std::setw;
os << setw(4) << dt.year << "-" << setw(2) << dt.month << "-" << setw(2)
<< dt.day;
return os;
}
inline std::ostream& operator<<(std::ostream& os, const local_time& ltime)
{
fill_guard g{os};
os.fill('0');
using std::setw;
os << setw(2) << ltime.hour << ":" << setw(2) << ltime.minute << ":"
<< setw(2) << ltime.second;
if (ltime.microsecond > 0)
{
os << ".";
int power = 100000;
for (int curr_us = ltime.microsecond; curr_us; power /= 10)
{
auto num = curr_us / power;
os << num;
curr_us -= num * power;
}
}
return os;
}
inline std::ostream& operator<<(std::ostream& os, const zone_offset& zo)
{
fill_guard g{os};
os.fill('0');
using std::setw;
if (zo.hour_offset != 0 || zo.minute_offset != 0)
{
if (zo.hour_offset > 0)
{
os << "+";
}
else
{
os << "-";
}
os << setw(2) << std::abs(zo.hour_offset) << ":" << setw(2)
<< std::abs(zo.minute_offset);
}
else
{
os << "Z";
}
return os;
}
inline std::ostream& operator<<(std::ostream& os, const local_datetime& dt)
{
return os << static_cast<const local_date&>(dt) << "T"
<< static_cast<const local_time&>(dt);
}
inline std::ostream& operator<<(std::ostream& os, const offset_datetime& dt)
{
return os << static_cast<const local_datetime&>(dt)
<< static_cast<const zone_offset&>(dt);
}
template <class T, class... Ts>
struct is_one_of;
template <class T, class V>
struct is_one_of<T, V> : std::is_same<T, V>
{
};
template <class T, class V, class... Ts>
struct is_one_of<T, V, Ts...>
{
const static bool value
= std::is_same<T, V>::value || is_one_of<T, Ts...>::value;
};
template <class T>
class value;
template <class T>
struct valid_value
: is_one_of<T, std::string, int64_t, double, bool, local_date, local_time,
local_datetime, offset_datetime>
{
};
template <class T, class Enable = void>
struct value_traits;
template <class T>
struct valid_value_or_string_convertible
{
const static bool value = valid_value<typename std::decay<T>::type>::value
|| std::is_convertible<T, std::string>::value;
};
template <class T>
struct value_traits<T, typename std::
enable_if<valid_value_or_string_convertible<T>::
value>::type>
{
using value_type = typename std::
conditional<valid_value<typename std::decay<T>::type>::value,
typename std::decay<T>::type, std::string>::type;
using type = value<value_type>;
static value_type construct(T&& val)
{
return value_type(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_floating_point<
typename std::decay<T>::type>::value>::
type>
{
using value_type = typename std::decay<T>::type;
using type = value<double>;
static value_type construct(T&& val)
{
return value_type(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_signed<typename std::decay<T>::
type>::value>::type>
{
using value_type = int64_t;
using type = value<int64_t>;
static value_type construct(T&& val)
{
if (val < std::numeric_limits<int64_t>::min())
throw std::underflow_error{"constructed value cannot be "
"represented by a 64-bit signed "
"integer"};
if (val > std::numeric_limits<int64_t>::max())
throw std::overflow_error{"constructed value cannot be represented "
"by a 64-bit signed integer"};
return static_cast<int64_t>(val);
}
};
template <class T>
struct value_traits<T,
typename std::
enable_if<!valid_value_or_string_convertible<T>::value
&& std::is_unsigned<typename std::decay<T>::
type>::value>::type>
{
using value_type = int64_t;
using type = value<int64_t>;
static value_type construct(T&& val)
{
if (val > static_cast<uint64_t>(std::numeric_limits<int64_t>::max()))
throw std::overflow_error{"constructed value cannot be represented "
"by a 64-bit signed integer"};
return static_cast<int64_t>(val);
}
};
class array;
class table;
class table_array;
template <class T>
struct array_of_trait
{
using return_type = option<std::vector<T>>;
};
template <>
struct array_of_trait<array>
{
using return_type = option<std::vector<std::shared_ptr<array>>>;
};
template <class T>
inline std::shared_ptr<typename value_traits<T>::type> make_value(T&& val);
inline std::shared_ptr<array> make_array();
template <class T>
inline std::shared_ptr<T> make_element();
inline std::shared_ptr<table> make_table();
inline std::shared_ptr<table_array> make_table_array();
/**
* A generic base TOML value used for type erasure.
*/
class base : public std::enable_shared_from_this<base>
{
public:
virtual ~base() = default;
/**
* Determines if the given TOML element is a value.
*/
virtual bool is_value() const
{
return false;
}
/**
* Determines if the given TOML element is a table.
*/
virtual bool is_table() const
{
return false;
}
/**
* Converts the TOML element into a table.
*/
std::shared_ptr<table> as_table()
{
if (is_table())
return std::static_pointer_cast<table>(shared_from_this());
return nullptr;
}
/**
* Determines if the TOML element is an array of "leaf" elements.
*/
virtual bool is_array() const
{
return false;
}
/**
* Converts the TOML element to an array.
*/
std::shared_ptr<array> as_array()
{
if (is_array())
return std::static_pointer_cast<array>(shared_from_this());
return nullptr;
}
/**
* Determines if the given TOML element is an array of tables.
*/
virtual bool is_table_array() const
{
return false;
}
/**
* Converts the TOML element into a table array.
*/
std::shared_ptr<table_array> as_table_array()
{
if (is_table_array())
return std::static_pointer_cast<table_array>(shared_from_this());
return nullptr;
}
/**
* Attempts to coerce the TOML element into a concrete TOML value
* of type T.
*/
template <class T>
std::shared_ptr<value<T>> as();
template <class T>
std::shared_ptr<const value<T>> as() const;
template <class Visitor, class... Args>
void accept(Visitor&& visitor, Args&&... args) const;
protected:
base()
{
// nothing
}
};
/**
* A concrete TOML value representing the "leaves" of the "tree".
*/
template <class T>
class value : public base
{
struct make_shared_enabler
{
// nothing; this is a private key accessible only to friends
};
template <class U>
friend std::shared_ptr<typename value_traits<U>::type>
cpptoml::make_value(U&& val);
public:
static_assert(valid_value<T>::value, "invalid value type");
value(const make_shared_enabler&, const T& val) : value(val)
{
// nothing; note that users cannot actually invoke this function
// because they lack access to the make_shared_enabler.
}
bool is_value() const override
{
return true;
}
/**
* Gets the data associated with this value.
*/
T& get()
{
return data_;
}
/**
* Gets the data associated with this value. Const version.
*/
const T& get() const
{
return data_;
}
private:
T data_;
/**
* Constructs a value from the given data.
*/
value(const T& val) : data_(val)
{
}
value(const value& val) = delete;
value& operator=(const value& val) = delete;
};
template <class T>
std::shared_ptr<typename value_traits<T>::type> make_value(T&& val)
{
using value_type = typename value_traits<T>::type;
using enabler = typename value_type::make_shared_enabler;
return std::make_shared<value_type>(
enabler{}, value_traits<T>::construct(std::forward<T>(val)));
}
template <class T>
inline std::shared_ptr<value<T>> base::as()
{
return std::dynamic_pointer_cast<value<T>>(shared_from_this());
}
// special case value<double> to allow getting an integer parameter as a
// double value
template <>
inline std::shared_ptr<value<double>> base::as()
{
if (auto v = std::dynamic_pointer_cast<value<double>>(shared_from_this()))
return v;
if (auto v = std::dynamic_pointer_cast<value<int64_t>>(shared_from_this()))
return make_value<double>(static_cast<double>(v->get()));
return nullptr;
}
template <class T>
inline std::shared_ptr<const value<T>> base::as() const
{
return std::dynamic_pointer_cast<const value<T>>(shared_from_this());
}
// special case value<double> to allow getting an integer parameter as a
// double value
template <>
inline std::shared_ptr<const value<double>> base::as() const
{
if (auto v
= std::dynamic_pointer_cast<const value<double>>(shared_from_this()))
return v;
if (auto v = as<int64_t>())
{
// the below has to be a non-const value<double> due to a bug in
// libc++: https://llvm.org/bugs/show_bug.cgi?id=18843
return make_value<double>(static_cast<double>(v->get()));
}
return nullptr;
}
/**
* Exception class for array insertion errors.
*/
class array_exception : public std::runtime_error
{
public:
array_exception(const std::string& err) : std::runtime_error{err}
{
}
};
class array : public base
{
public:
friend std::shared_ptr<array> make_array();
virtual bool is_array() const override
{
return true;
}
/**
* arrays can be iterated over
*/
using iterator = std::vector<std::shared_ptr<base>>::iterator;
/**
* arrays can be iterated over. Const version.
*/
using const_iterator = std::vector<std::shared_ptr<base>>::const_iterator;
iterator begin()
{
return values_.begin();
}
const_iterator begin() const
{
return values_.begin();
}
iterator end()
{
return values_.end();
}
const_iterator end() const
{
return values_.end();
}
/**
* Obtains the array (vector) of base values.
*/
std::vector<std::shared_ptr<base>>& get()
{
return values_;
}
/**
* Obtains the array (vector) of base values. Const version.
*/
const std::vector<std::shared_ptr<base>>& get() const
{
return values_;
}
std::shared_ptr<base> at(size_t idx) const
{
return values_.at(idx);
}
/**
* Obtains an array of value<T>s. Note that elements may be
* nullptr if they cannot be converted to a value<T>.
*/
template <class T>
std::vector<std::shared_ptr<value<T>>> array_of() const
{
std::vector<std::shared_ptr<value<T>>> result(values_.size());
std::transform(values_.begin(), values_.end(), result.begin(),
[&](std::shared_ptr<base> v) { return v->as<T>(); });
return result;
}
/**
* Obtains a option<vector<T>>. The option will be empty if the array
* contains values that are not of type T.
*/
template <class T>
inline typename array_of_trait<T>::return_type get_array_of() const
{
std::vector<T> result;
result.reserve(values_.size());
for (const auto& val : values_)
{
if (auto v = val->as<T>())
result.push_back(v->get());
else
return {};
}
return {std::move(result)};
}
/**
* Obtains an array of arrays. Note that elements may be nullptr
* if they cannot be converted to a array.
*/
std::vector<std::shared_ptr<array>> nested_array() const
{
std::vector<std::shared_ptr<array>> result(values_.size());
std::transform(values_.begin(), values_.end(), result.begin(),
[&](std::shared_ptr<base> v) -> std::shared_ptr<array> {
if (v->is_array())
return std::static_pointer_cast<array>(v);
return std::shared_ptr<array>{};
});
return result;
}
/**
* Add a value to the end of the array
*/
template <class T>
void push_back(const std::shared_ptr<value<T>>& val)
{
if (values_.empty() || values_[0]->as<T>())
{
values_.push_back(val);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Add an array to the end of the array
*/
void push_back(const std::shared_ptr<array>& val)
{
if (values_.empty() || values_[0]->is_array())
{
values_.push_back(val);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Convenience function for adding a simple element to the end
* of the array.
*/
template <class T>
void push_back(T&& val, typename value_traits<T>::type* = 0)
{
push_back(make_value(std::forward<T>(val)));
}
/**
* Insert a value into the array
*/
template <class T>
iterator insert(iterator position, const std::shared_ptr<value<T>>& value)
{
if (values_.empty() || values_[0]->as<T>())
{
return values_.insert(position, value);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Insert an array into the array
*/
iterator insert(iterator position, const std::shared_ptr<array>& value)
{
if (values_.empty() || values_[0]->is_array())
{
return values_.insert(position, value);
}
else
{
throw array_exception{"Arrays must be homogenous."};
}
}
/**
* Convenience function for inserting a simple element in the array
*/
template <class T>
iterator insert(iterator position, T&& val,
typename value_traits<T>::type* = 0)
{
return insert(position, make_value(std::forward<T>(val)));
}
/**
* Erase an element from the array
*/
iterator erase(iterator position)
{
return values_.erase(position);
}
/**
* Clear the array
*/
void clear()
{
values_.clear();
}
private:
array() = default;
template <class InputIterator>
array(InputIterator begin, InputIterator end) : values_{begin, end}
{
// nothing
}
array(const array& obj) = delete;
array& operator=(const array& obj) = delete;
std::vector<std::shared_ptr<base>> values_;
};
inline std::shared_ptr<array> make_array()
{
struct make_shared_enabler : public array
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<array> make_element<array>()
{
return make_array();
}
/**
* Obtains a option<vector<T>>. The option will be empty if the array
* contains values that are not of type T.
*/
template <>
inline typename array_of_trait<array>::return_type
array::get_array_of<array>() const
{
std::vector<std::shared_ptr<array>> result;
result.reserve(values_.size());
for (const auto& val : values_)
{
if (auto v = val->as_array())
result.push_back(v);
else
return {};
}
return {std::move(result)};
}
class table;
class table_array : public base
{
friend class table;
friend std::shared_ptr<table_array> make_table_array();
public:
/**
* arrays can be iterated over
*/
using iterator = std::vector<std::shared_ptr<table>>::iterator;
/**
* arrays can be iterated over. Const version.
*/
using const_iterator = std::vector<std::shared_ptr<table>>::const_iterator;
iterator begin()
{
return array_.begin();
}
const_iterator begin() const
{
return array_.begin();
}
iterator end()
{
return array_.end();
}
const_iterator end() const
{
return array_.end();
}
virtual bool is_table_array() const override
{
return true;
}
std::vector<std::shared_ptr<table>>& get()
{
return array_;
}
const std::vector<std::shared_ptr<table>>& get() const
{
return array_;
}
/**
* Add a table to the end of the array
*/
void push_back(const std::shared_ptr<table>& val)
{
array_.push_back(val);
}
/**
* Insert a table into the array
*/
iterator insert(iterator position, const std::shared_ptr<table>& value)
{
return array_.insert(position, value);
}
/**
* Erase an element from the array
*/
iterator erase(iterator position)
{
return array_.erase(position);
}
/**
* Clear the array
*/
void clear()
{
array_.clear();
}
private:
table_array()
{
// nothing
}
table_array(const table_array& obj) = delete;
table_array& operator=(const table_array& rhs) = delete;
std::vector<std::shared_ptr<table>> array_;
};
inline std::shared_ptr<table_array> make_table_array()
{
struct make_shared_enabler : public table_array
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<table_array> make_element<table_array>()
{
return make_table_array();
}
// The below are overloads for fetching specific value types out of a value
// where special casting behavior (like bounds checking) is desired
template <class T>
typename std::enable_if<!std::is_floating_point<T>::value
&& std::is_signed<T>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<int64_t>())
{
if (v->get() < std::numeric_limits<T>::min())
throw std::underflow_error{
"T cannot represent the value requested in get"};
if (v->get() > std::numeric_limits<T>::max())
throw std::overflow_error{
"T cannot represent the value requested in get"};
return {static_cast<T>(v->get())};
}
else
{
return {};
}
}
template <class T>
typename std::enable_if<!std::is_same<T, bool>::value
&& std::is_unsigned<T>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<int64_t>())
{
if (v->get() < 0)
throw std::underflow_error{"T cannot store negative value in get"};
if (static_cast<uint64_t>(v->get()) > std::numeric_limits<T>::max())
throw std::overflow_error{
"T cannot represent the value requested in get"};
return {static_cast<T>(v->get())};
}
else
{
return {};
}
}
template <class T>
typename std::enable_if<!std::is_integral<T>::value
|| std::is_same<T, bool>::value,
option<T>>::type
get_impl(const std::shared_ptr<base>& elem)
{
if (auto v = elem->as<T>())
{
return {v->get()};
}
else
{
return {};
}
}
/**
* Represents a TOML keytable.
*/
class table : public base
{
public:
friend class table_array;
friend std::shared_ptr<table> make_table();
/**
* tables can be iterated over.
*/
using iterator = string_to_base_map::iterator;
/**
* tables can be iterated over. Const version.
*/
using const_iterator = string_to_base_map::const_iterator;
iterator begin()
{
return map_.begin();
}
const_iterator begin() const
{
return map_.begin();
}
iterator end()
{
return map_.end();
}
const_iterator end() const
{
return map_.end();
}
size_t size() const
{
return map_.size();
}
bool is_table() const override
{
return true;
}
bool empty() const
{
return map_.empty();
}
/**
* Determines if this key table contains the given key.
*/
bool contains(const std::string& key) const
{
return map_.find(key) != map_.end();
}
/**
* Determines if this key table contains the given key. Will
* resolve "qualified keys". Qualified keys are the full access
* path separated with dots like "grandparent.parent.child".
*/
bool contains_qualified(const std::string& key) const
{
return resolve_qualified(key);
}
/**
* Obtains the base for a given key.
* @throw std::out_of_range if the key does not exist
*/
std::shared_ptr<base> get(const std::string& key) const
{
return map_.at(key);
}
/**
* Obtains the base for a given key. Will resolve "qualified
* keys". Qualified keys are the full access path separated with
* dots like "grandparent.parent.child".
*
* @throw std::out_of_range if the key does not exist
*/
std::shared_ptr<base> get_qualified(const std::string& key) const
{
std::shared_ptr<base> p;
resolve_qualified(key, &p);
return p;
}
/**
* Obtains a table for a given key, if possible.
*/
std::shared_ptr<table> get_table(const std::string& key) const
{
if (contains(key) && get(key)->is_table())
return std::static_pointer_cast<table>(get(key));
return nullptr;
}
/**
* Obtains a table for a given key, if possible. Will resolve
* "qualified keys".
*/
std::shared_ptr<table> get_table_qualified(const std::string& key) const
{
if (contains_qualified(key) && get_qualified(key)->is_table())
return std::static_pointer_cast<table>(get_qualified(key));
return nullptr;
}
/**
* Obtains an array for a given key.
*/
std::shared_ptr<array> get_array(const std::string& key) const
{
if (!contains(key))
return nullptr;
return get(key)->as_array();
}
/**
* Obtains an array for a given key. Will resolve "qualified keys".
*/
std::shared_ptr<array> get_array_qualified(const std::string& key) const
{
if (!contains_qualified(key))
return nullptr;
return get_qualified(key)->as_array();
}
/**
* Obtains a table_array for a given key, if possible.
*/
std::shared_ptr<table_array> get_table_array(const std::string& key) const
{
if (!contains(key))
return nullptr;
return get(key)->as_table_array();
}
/**
* Obtains a table_array for a given key, if possible. Will resolve
* "qualified keys".
*/
std::shared_ptr<table_array>
get_table_array_qualified(const std::string& key) const
{
if (!contains_qualified(key))
return nullptr;
return get_qualified(key)->as_table_array();
}
/**
* Helper function that attempts to get a value corresponding
* to the template parameter from a given key.
*/
template <class T>
option<T> get_as(const std::string& key) const
{
try
{
return get_impl<T>(get(key));
}
catch (const std::out_of_range&)
{
return {};
}
}
/**
* Helper function that attempts to get a value corresponding
* to the template parameter from a given key. Will resolve "qualified
* keys".
*/
template <class T>
option<T> get_qualified_as(const std::string& key) const
{
try
{
return get_impl<T>(get_qualified(key));
}
catch (const std::out_of_range&)
{
return {};
}
}
/**
* Helper function that attempts to get an array of values of a given
* type corresponding to the template parameter for a given key.
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <class T>
inline typename array_of_trait<T>::return_type
get_array_of(const std::string& key) const
{
if (auto v = get_array(key))
{
std::vector<T> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as<T>())
result.push_back(val->get());
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Helper function that attempts to get an array of values of a given
* type corresponding to the template parameter for a given key. Will
* resolve "qualified keys".
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <class T>
inline typename array_of_trait<T>::return_type
get_qualified_array_of(const std::string& key) const
{
if (auto v = get_array_qualified(key))
{
std::vector<T> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as<T>())
result.push_back(val->get());
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Adds an element to the keytable.
*/
void insert(const std::string& key, const std::shared_ptr<base>& value)
{
map_[key] = value;
}
/**
* Convenience shorthand for adding a simple element to the
* keytable.
*/
template <class T>
void insert(const std::string& key, T&& val,
typename value_traits<T>::type* = 0)
{
insert(key, make_value(std::forward<T>(val)));
}
/**
* Removes an element from the table.
*/
void erase(const std::string& key)
{
map_.erase(key);
}
private:
table()
{
// nothing
}
table(const table& obj) = delete;
table& operator=(const table& rhs) = delete;
std::vector<std::string> split(const std::string& value,
char separator) const
{
std::vector<std::string> result;
std::string::size_type p = 0;
std::string::size_type q;
while ((q = value.find(separator, p)) != std::string::npos)
{
result.emplace_back(value, p, q - p);
p = q + 1;
}
result.emplace_back(value, p);
return result;
}
// If output parameter p is specified, fill it with the pointer to the
// specified entry and throw std::out_of_range if it couldn't be found.
//
// Otherwise, just return true if the entry could be found or false
// otherwise and do not throw.
bool resolve_qualified(const std::string& key,
std::shared_ptr<base>* p = nullptr) const
{
auto parts = split(key, '.');
auto last_key = parts.back();
parts.pop_back();
auto table = this;
for (const auto& part : parts)
{
table = table->get_table(part).get();
if (!table)
{
if (!p)
return false;
throw std::out_of_range{key + " is not a valid key"};
}
}
if (!p)
return table->map_.count(last_key) != 0;
*p = table->map_.at(last_key);
return true;
}
string_to_base_map map_;
};
/**
* Helper function that attempts to get an array of arrays for a given
* key.
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <>
inline typename array_of_trait<array>::return_type
table::get_array_of<array>(const std::string& key) const
{
if (auto v = get_array(key))
{
std::vector<std::shared_ptr<array>> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as_array())
result.push_back(val);
else
return {};
}
return {std::move(result)};
}
return {};
}
/**
* Helper function that attempts to get an array of arrays for a given
* key. Will resolve "qualified keys".
*
* If the key doesn't exist, doesn't exist as an array type, or one or
* more keys inside the array type are not of type T, an empty option
* is returned. Otherwise, an option containing a vector of the values
* is returned.
*/
template <>
inline typename array_of_trait<array>::return_type
table::get_qualified_array_of<array>(const std::string& key) const
{
if (auto v = get_array(key))
{
std::vector<std::shared_ptr<array>> result;
result.reserve(v->get().size());
for (const auto& b : v->get())
{
if (auto val = b->as_array())
result.push_back(val);
else
return {};
}
return {std::move(result)};
}
return {};
}
std::shared_ptr<table> make_table()
{
struct make_shared_enabler : public table
{
make_shared_enabler()
{
// nothing
}
};
return std::make_shared<make_shared_enabler>();
}
template <>
inline std::shared_ptr<table> make_element<table>()
{
return make_table();
}
/**
* Exception class for all TOML parsing errors.
*/
class parse_exception : public std::runtime_error
{
public:
parse_exception(const std::string& err) : std::runtime_error{err}
{
}
parse_exception(const std::string& err, std::size_t line_number)
: std::runtime_error{err + " at line " + std::to_string(line_number)}
{
}
};
inline bool is_number(char c)
{
return c >= '0' && c <= '9';
}
/**
* Helper object for consuming expected characters.
*/
template <class OnError>
class consumer
{
public:
consumer(std::string::iterator& it, const std::string::iterator& end,
OnError&& on_error)
: it_(it), end_(end), on_error_(std::forward<OnError>(on_error))
{
// nothing
}
void operator()(char c)
{
if (it_ == end_ || *it_ != c)
on_error_();
++it_;
}
template <std::size_t N>
void operator()(const char (&str)[N])
{
std::for_each(std::begin(str), std::end(str) - 1,
[&](char c) { (*this)(c); });
}
int eat_digits(int len)
{
int val = 0;
for (int i = 0; i < len; ++i)
{
if (!is_number(*it_) || it_ == end_)
on_error_();
val = 10 * val + (*it_++ - '0');
}
return val;
}
void error()
{
on_error_();
}
private:
std::string::iterator& it_;
const std::string::iterator& end_;
OnError on_error_;
};
template <class OnError>
consumer<OnError> make_consumer(std::string::iterator& it,
const std::string::iterator& end,
OnError&& on_error)
{
return consumer<OnError>(it, end, std::forward<OnError>(on_error));
}
// replacement for std::getline to handle incorrectly line-ended files
// https://stackoverflow.com/questions/6089231/getting-std-ifstream-to-handle-lf-cr-and-crlf
namespace detail
{
inline std::istream& getline(std::istream& input, std::string& line)
{
line.clear();
std::istream::sentry sentry{input, true};
auto sb = input.rdbuf();
while (true)
{
auto c = sb->sbumpc();
if (c == '\r')
{
if (sb->sgetc() == '\n')
c = sb->sbumpc();
}
if (c == '\n')
return input;
if (c == std::istream::traits_type::eof())
{
if (line.empty())
input.setstate(std::ios::eofbit);
return input;
}
line.push_back(static_cast<char>(c));
}
}
}
/**
* The parser class.
*/
class parser
{
public:
/**
* Parsers are constructed from streams.
*/
parser(std::istream& stream) : input_(stream)
{
// nothing
}
parser& operator=(const parser& parser) = delete;
/**
* Parses the stream this parser was created on until EOF.
* @throw parse_exception if there are errors in parsing
*/
std::shared_ptr<table> parse()
{
std::shared_ptr<table> root = make_table();
table* curr_table = root.get();
while (detail::getline(input_, line_))
{
line_number_++;
auto it = line_.begin();
auto end = line_.end();
consume_whitespace(it, end);
if (it == end || *it == '#')
continue;
if (*it == '[')
{
curr_table = root.get();
parse_table(it, end, curr_table);
}
else
{
parse_key_value(it, end, curr_table);
consume_whitespace(it, end);
eol_or_comment(it, end);
}
}
return root;
}
private:
#if defined _MSC_VER
__declspec(noreturn)
#elif defined __GNUC__
__attribute__((noreturn))
#endif
void throw_parse_exception(const std::string& err)
{
throw parse_exception{err, line_number_};
}
void parse_table(std::string::iterator& it,
const std::string::iterator& end, table*& curr_table)
{
// remove the beginning keytable marker
++it;
if (it == end)
throw_parse_exception("Unexpected end of table");
if (*it == '[')
parse_table_array(it, end, curr_table);
else
parse_single_table(it, end, curr_table);
}
void parse_single_table(std::string::iterator& it,
const std::string::iterator& end,
table*& curr_table)
{
if (it == end || *it == ']')
throw_parse_exception("Table name cannot be empty");
std::string full_table_name;
bool inserted = false;
while (it != end && *it != ']')
{
auto part = parse_key(it, end,
[](char c) { return c == '.' || c == ']'; });
if (part.empty())
throw_parse_exception("Empty component of table name");
if (!full_table_name.empty())
full_table_name += ".";
full_table_name += part;
if (curr_table->contains(part))
{
auto b = curr_table->get(part);
if (b->is_table())
curr_table = static_cast<table*>(b.get());
else if (b->is_table_array())
curr_table = std::static_pointer_cast<table_array>(b)
->get()
.back()
.get();
else
throw_parse_exception("Key " + full_table_name
+ "already exists as a value");
}
else
{
inserted = true;
curr_table->insert(part, make_table());
curr_table = static_cast<table*>(curr_table->get(part).get());
}
consume_whitespace(it, end);
if (it != end && *it == '.')
++it;
consume_whitespace(it, end);
}
// table already existed
if (!inserted)
{
auto is_value
= [](const std::pair<const std::string&,
const std::shared_ptr<base>&>& p) {
return p.second->is_value();
};
// if there are any values, we can't add values to this table
// since it has already been defined. If there aren't any
// values, then it was implicitly created by something like
// [a.b]
if (curr_table->empty() || std::any_of(curr_table->begin(),
curr_table->end(), is_value))
{
throw_parse_exception("Redefinition of table "
+ full_table_name);
}
}
++it;
consume_whitespace(it, end);
eol_or_comment(it, end);
}
void parse_table_array(std::string::iterator& it,
const std::string::iterator& end, table*& curr_table)
{
++it;
if (it == end || *it == ']')
throw_parse_exception("Table array name cannot be empty");
std::string full_ta_name;
while (it != end && *it != ']')
{
auto part = parse_key(it, end,
[](char c) { return c == '.' || c == ']'; });
if (part.empty())
throw_parse_exception("Empty component of table array name");
if (!full_ta_name.empty())
full_ta_name += ".";
full_ta_name += part;
consume_whitespace(it, end);
if (it != end && *it == '.')
++it;
consume_whitespace(it, end);
if (curr_table->contains(part))
{
auto b = curr_table->get(part);
// if this is the end of the table array name, add an
// element to the table array that we just looked up
if (it != end && *it == ']')
{
if (!b->is_table_array())
throw_parse_exception("Key " + full_ta_name
+ " is not a table array");
auto v = b->as_table_array();
v->get().push_back(make_table());
curr_table = v->get().back().get();
}
// otherwise, just keep traversing down the key name
else
{
if (b->is_table())
curr_table = static_cast<table*>(b.get());
else if (b->is_table_array())
curr_table = std::static_pointer_cast<table_array>(b)
->get()
.back()
.get();
else
throw_parse_exception("Key " + full_ta_name
+ " already exists as a value");
}
}
else
{
// if this is the end of the table array name, add a new
// table array and a new table inside that array for us to
// add keys to next
if (it != end && *it == ']')
{
curr_table->insert(part, make_table_array());
auto arr = std::static_pointer_cast<table_array>(
curr_table->get(part));
arr->get().push_back(make_table());
curr_table = arr->get().back().get();
}
// otherwise, create the implicitly defined table and move
// down to it
else
{
curr_table->insert(part, make_table());
curr_table
= static_cast<table*>(curr_table->get(part).get());
}
}
}
// consume the last "]]"
if (it == end)
throw_parse_exception("Unterminated table array name");
++it;
if (it == end)
throw_parse_exception("Unterminated table array name");
++it;
consume_whitespace(it, end);
eol_or_comment(it, end);
}
void parse_key_value(std::string::iterator& it, std::string::iterator& end,
table* curr_table)
{
auto key = parse_key(it, end, [](char c) { return c == '='; });
if (curr_table->contains(key))
throw_parse_exception("Key " + key + " already present");
if (*it != '=')
throw_parse_exception("Value must follow after a '='");
++it;
consume_whitespace(it, end);
curr_table->insert(key, parse_value(it, end));
consume_whitespace(it, end);
}
template <class Function>
std::string parse_key(std::string::iterator& it,
const std::string::iterator& end, Function&& fun)
{
consume_whitespace(it, end);
if (*it == '"')
{
return parse_quoted_key(it, end);
}
else
{
auto bke = std::find_if(it, end, std::forward<Function>(fun));
return parse_bare_key(it, bke);
}
}
std::string parse_bare_key(std::string::iterator& it,
const std::string::iterator& end)
{
if (it == end)
{
throw_parse_exception("Bare key missing name");
}
auto key_end = end;
--key_end;
consume_backwards_whitespace(key_end, it);
++key_end;
std::string key{it, key_end};
if (std::find(it, key_end, '#') != key_end)
{
throw_parse_exception("Bare key " + key + " cannot contain #");
}
if (std::find_if(it, key_end,
[](char c) { return c == ' ' || c == '\t'; })
!= key_end)
{
throw_parse_exception("Bare key " + key
+ " cannot contain whitespace");
}
if (std::find_if(it, key_end,
[](char c) { return c == '[' || c == ']'; })
!= key_end)
{
throw_parse_exception("Bare key " + key
+ " cannot contain '[' or ']'");
}
it = end;
return key;
}
std::string parse_quoted_key(std::string::iterator& it,
const std::string::iterator& end)
{
return string_literal(it, end, '"');
}
enum class parse_type
{
STRING = 1,
LOCAL_TIME,
LOCAL_DATE,
LOCAL_DATETIME,
OFFSET_DATETIME,
INT,
FLOAT,
BOOL,
ARRAY,
INLINE_TABLE
};
std::shared_ptr<base> parse_value(std::string::iterator& it,
std::string::iterator& end)
{
parse_type type = determine_value_type(it, end);
switch (type)
{
case parse_type::STRING:
return parse_string(it, end);
case parse_type::LOCAL_TIME:
return parse_time(it, end);
case parse_type::LOCAL_DATE:
case parse_type::LOCAL_DATETIME:
case parse_type::OFFSET_DATETIME:
return parse_date(it, end);
case parse_type::INT:
case parse_type::FLOAT:
return parse_number(it, end);
case parse_type::BOOL:
return parse_bool(it, end);
case parse_type::ARRAY:
return parse_array(it, end);
case parse_type::INLINE_TABLE:
return parse_inline_table(it, end);
default:
throw_parse_exception("Failed to parse value");
}
}
parse_type determine_value_type(const std::string::iterator& it,
const std::string::iterator& end)
{
if (*it == '"' || *it == '\'')
{
return parse_type::STRING;
}
else if (is_time(it, end))
{
return parse_type::LOCAL_TIME;
}
else if (auto dtype = date_type(it, end))
{
return *dtype;
}
else if (is_number(*it) || *it == '-' || *it == '+')
{
return determine_number_type(it, end);
}
else if (*it == 't' || *it == 'f')
{
return parse_type::BOOL;
}
else if (*it == '[')
{
return parse_type::ARRAY;
}
else if (*it == '{')
{
return parse_type::INLINE_TABLE;
}
throw_parse_exception("Failed to parse value type");
}
parse_type determine_number_type(const std::string::iterator& it,
const std::string::iterator& end)
{
// determine if we are an integer or a float
auto check_it = it;
if (*check_it == '-' || *check_it == '+')
++check_it;
while (check_it != end && is_number(*check_it))
++check_it;
if (check_it != end && *check_it == '.')
{
++check_it;
while (check_it != end && is_number(*check_it))
++check_it;
return parse_type::FLOAT;
}
else
{
return parse_type::INT;
}
}
std::shared_ptr<value<std::string>> parse_string(std::string::iterator& it,
std::string::iterator& end)
{
auto delim = *it;
assert(delim == '"' || delim == '\'');
// end is non-const here because we have to be able to potentially
// parse multiple lines in a string, not just one
auto check_it = it;
++check_it;
if (check_it != end && *check_it == delim)
{
++check_it;
if (check_it != end && *check_it == delim)
{
it = ++check_it;
return parse_multiline_string(it, end, delim);
}
}
return make_value<std::string>(string_literal(it, end, delim));
}
std::shared_ptr<value<std::string>>
parse_multiline_string(std::string::iterator& it,
std::string::iterator& end, char delim)
{
std::stringstream ss;
auto is_ws = [](char c) { return c == ' ' || c == '\t'; };
bool consuming = false;
std::shared_ptr<value<std::string>> ret;
auto handle_line
= [&](std::string::iterator& it, std::string::iterator& end) {
if (consuming)
{
it = std::find_if_not(it, end, is_ws);
// whole line is whitespace
if (it == end)
return;
}
consuming = false;
while (it != end)
{
// handle escaped characters
if (delim == '"' && *it == '\\')
{
auto check = it;
// check if this is an actual escape sequence or a
// whitespace escaping backslash
++check;
consume_whitespace(check, end);
if (check == end)
{
consuming = true;
break;
}
ss << parse_escape_code(it, end);
continue;
}
// if we can end the string
if (std::distance(it, end) >= 3)
{
auto check = it;
// check for """
if (*check++ == delim && *check++ == delim
&& *check++ == delim)
{
it = check;
ret = make_value<std::string>(ss.str());
break;
}
}
ss << *it++;
}
};
// handle the remainder of the current line
handle_line(it, end);
if (ret)
return ret;
// start eating lines
while (detail::getline(input_, line_))
{
++line_number_;
it = line_.begin();
end = line_.end();
handle_line(it, end);
if (ret)
return ret;
if (!consuming)
ss << std::endl;
}
throw_parse_exception("Unterminated multi-line basic string");
}
std::string string_literal(std::string::iterator& it,
const std::string::iterator& end, char delim)
{
++it;
std::string val;
while (it != end)
{
// handle escaped characters
if (delim == '"' && *it == '\\')
{
val += parse_escape_code(it, end);
}
else if (*it == delim)
{
++it;
consume_whitespace(it, end);
return val;
}
else
{
val += *it++;
}
}
throw_parse_exception("Unterminated string literal");
}
std::string parse_escape_code(std::string::iterator& it,
const std::string::iterator& end)
{
++it;
if (it == end)
throw_parse_exception("Invalid escape sequence");
char value;
if (*it == 'b')
{
value = '\b';
}
else if (*it == 't')
{
value = '\t';
}
else if (*it == 'n')
{
value = '\n';
}
else if (*it == 'f')
{
value = '\f';
}
else if (*it == 'r')
{
value = '\r';
}
else if (*it == '"')
{
value = '"';
}
else if (*it == '\\')
{
value = '\\';
}
else if (*it == 'u' || *it == 'U')
{
return parse_unicode(it, end);
}
else
{
throw_parse_exception("Invalid escape sequence");
}
++it;
return std::string(1, value);
}
std::string parse_unicode(std::string::iterator& it,
const std::string::iterator& end)
{
bool large = *it++ == 'U';
auto codepoint = parse_hex(it, end, large ? 0x10000000 : 0x1000);
if ((codepoint > 0xd7ff && codepoint < 0xe000) || codepoint > 0x10ffff)
{
throw_parse_exception(
"Unicode escape sequence is not a Unicode scalar value");
}
std::string result;
// See Table 3-6 of the Unicode standard
if (codepoint <= 0x7f)
{
// 1-byte codepoints: 00000000 0xxxxxxx
// repr: 0xxxxxxx
result += static_cast<char>(codepoint & 0x7f);
}
else if (codepoint <= 0x7ff)
{
// 2-byte codepoints: 00000yyy yyxxxxxx
// repr: 110yyyyy 10xxxxxx
//
// 0x1f = 00011111
// 0xc0 = 11000000
//
result += static_cast<char>(0xc0 | ((codepoint >> 6) & 0x1f));
//
// 0x80 = 10000000
// 0x3f = 00111111
//
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
else if (codepoint <= 0xffff)
{
// 3-byte codepoints: zzzzyyyy yyxxxxxx
// repr: 1110zzzz 10yyyyyy 10xxxxxx
//
// 0xe0 = 11100000
// 0x0f = 00001111
//
result += static_cast<char>(0xe0 | ((codepoint >> 12) & 0x0f));
result += static_cast<char>(0x80 | ((codepoint >> 6) & 0x1f));
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
else
{
// 4-byte codepoints: 000uuuuu zzzzyyyy yyxxxxxx
// repr: 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
//
// 0xf0 = 11110000
// 0x07 = 00000111
//
result += static_cast<char>(0xf0 | ((codepoint >> 18) & 0x07));
result += static_cast<char>(0x80 | ((codepoint >> 12) & 0x3f));
result += static_cast<char>(0x80 | ((codepoint >> 6) & 0x3f));
result += static_cast<char>(0x80 | (codepoint & 0x3f));
}
return result;
}
uint32_t parse_hex(std::string::iterator& it,
const std::string::iterator& end, uint32_t place)
{
uint32_t value = 0;
while (place > 0)
{
if (it == end)
throw_parse_exception("Unexpected end of unicode sequence");
if (!is_hex(*it))
throw_parse_exception("Invalid unicode escape sequence");
value += place * hex_to_digit(*it++);
place /= 16;
}
return value;
}
bool is_hex(char c)
{
return is_number(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
}
uint32_t hex_to_digit(char c)
{
if (is_number(c))
return static_cast<uint32_t>(c - '0');
return 10 + static_cast<uint32_t>(
c - ((c >= 'a' && c <= 'f') ? 'a' : 'A'));
}
std::shared_ptr<base> parse_number(std::string::iterator& it,
const std::string::iterator& end)
{
auto check_it = it;
auto check_end = find_end_of_number(it, end);
auto eat_sign = [&]() {
if (check_it != end && (*check_it == '-' || *check_it == '+'))
++check_it;
};
eat_sign();
auto eat_numbers = [&]() {
auto beg = check_it;
while (check_it != end && is_number(*check_it))
{
++check_it;
if (check_it != end && *check_it == '_')
{
++check_it;
if (check_it == end || !is_number(*check_it))
throw_parse_exception("Malformed number");
}
}
if (check_it == beg)
throw_parse_exception("Malformed number");
};
auto check_no_leading_zero = [&]() {
if (check_it != end && *check_it == '0' && check_it + 1 != check_end
&& check_it[1] != '.')
{
throw_parse_exception("Numbers may not have leading zeros");
}
};
check_no_leading_zero();
eat_numbers();
if (check_it != end
&& (*check_it == '.' || *check_it == 'e' || *check_it == 'E'))
{
bool is_exp = *check_it == 'e' || *check_it == 'E';
++check_it;
if (check_it == end)
throw_parse_exception("Floats must have trailing digits");
auto eat_exp = [&]() {
eat_sign();
check_no_leading_zero();
eat_numbers();
};
if (is_exp)
eat_exp();
else
eat_numbers();
if (!is_exp && check_it != end
&& (*check_it == 'e' || *check_it == 'E'))
{
++check_it;
eat_exp();
}
return parse_float(it, check_it);
}
else
{
return parse_int(it, check_it);
}
}
std::shared_ptr<value<int64_t>> parse_int(std::string::iterator& it,
const std::string::iterator& end)
{
std::string v{it, end};
v.erase(std::remove(v.begin(), v.end(), '_'), v.end());
it = end;
try
{
return make_value<int64_t>(std::stoll(v));
}
catch (const std::invalid_argument& ex)
{
throw_parse_exception("Malformed number (invalid argument: "
+ std::string{ex.what()} + ")");
}
catch (const std::out_of_range& ex)
{
throw_parse_exception("Malformed number (out of range: "
+ std::string{ex.what()} + ")");
}
}
std::shared_ptr<value<double>> parse_float(std::string::iterator& it,
const std::string::iterator& end)
{
std::string v{it, end};
v.erase(std::remove(v.begin(), v.end(), '_'), v.end());
it = end;
try
{
return make_value<double>(std::stod(v));
}
catch (const std::invalid_argument& ex)
{
throw_parse_exception("Malformed number (invalid argument: "
+ std::string{ex.what()} + ")");
}
catch (const std::out_of_range& ex)
{
throw_parse_exception("Malformed number (out of range: "
+ std::string{ex.what()} + ")");
}
}
std::shared_ptr<value<bool>> parse_bool(std::string::iterator& it,
const std::string::iterator& end)
{
auto eat = make_consumer(it, end, [this]() {
throw_parse_exception("Attempted to parse invalid boolean value");
});
if (*it == 't')
{
eat("true");
return make_value<bool>(true);
}
else if (*it == 'f')
{
eat("false");
return make_value<bool>(false);
}
eat.error();
return nullptr;
}
std::string::iterator find_end_of_number(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [this](char c) {
return !is_number(c) && c != '_' && c != '.' && c != 'e' && c != 'E'
&& c != '-' && c != '+';
});
}
std::string::iterator find_end_of_date(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [this](char c) {
return !is_number(c) && c != 'T' && c != 'Z' && c != ':' && c != '-'
&& c != '+' && c != '.';
});
}
std::string::iterator find_end_of_time(std::string::iterator it,
std::string::iterator end)
{
return std::find_if(it, end, [this](char c) {
return !is_number(c) && c != ':' && c != '.';
});
}
local_time read_time(std::string::iterator& it,
const std::string::iterator& end)
{
auto time_end = find_end_of_time(it, end);
auto eat = make_consumer(
it, time_end, [&]() { throw_parse_exception("Malformed time"); });
local_time ltime;
ltime.hour = eat.eat_digits(2);
eat(':');
ltime.minute = eat.eat_digits(2);
eat(':');
ltime.second = eat.eat_digits(2);
int power = 100000;
if (it != time_end && *it == '.')
{
++it;
while (it != time_end && is_number(*it))
{
ltime.microsecond += power * (*it++ - '0');
power /= 10;
}
}
if (it != time_end)
throw_parse_exception("Malformed time");
return ltime;
}
std::shared_ptr<value<local_time>>
parse_time(std::string::iterator& it, const std::string::iterator& end)
{
return make_value(read_time(it, end));
}
std::shared_ptr<base> parse_date(std::string::iterator& it,
const std::string::iterator& end)
{
auto date_end = find_end_of_date(it, end);
auto eat = make_consumer(
it, date_end, [&]() { throw_parse_exception("Malformed date"); });
local_date ldate;
ldate.year = eat.eat_digits(4);
eat('-');
ldate.month = eat.eat_digits(2);
eat('-');
ldate.day = eat.eat_digits(2);
if (it == date_end)
return make_value(ldate);
eat('T');
local_datetime ldt;
static_cast<local_date&>(ldt) = ldate;
static_cast<local_time&>(ldt) = read_time(it, date_end);
if (it == date_end)
return make_value(ldt);
offset_datetime dt;
static_cast<local_datetime&>(dt) = ldt;
int hoff = 0;
int moff = 0;
if (*it == '+' || *it == '-')
{
auto plus = *it == '+';
++it;
hoff = eat.eat_digits(2);
dt.hour_offset = (plus) ? hoff : -hoff;
eat(':');
moff = eat.eat_digits(2);
dt.minute_offset = (plus) ? moff : -moff;
}
else if (*it == 'Z')
{
++it;
}
if (it != date_end)
throw_parse_exception("Malformed date");
return make_value(dt);
}
std::shared_ptr<base> parse_array(std::string::iterator& it,
std::string::iterator& end)
{
// this gets ugly because of the "homogeneity" restriction:
// arrays can either be of only one type, or contain arrays
// (each of those arrays could be of different types, though)
//
// because of the latter portion, we don't really have a choice
// but to represent them as arrays of base values...
++it;
// ugh---have to read the first value to determine array type...
skip_whitespace_and_comments(it, end);
// edge case---empty array
if (*it == ']')
{
++it;
return make_array();
}
auto val_end = std::find_if(
it, end, [](char c) { return c == ',' || c == ']' || c == '#'; });
parse_type type = determine_value_type(it, val_end);
switch (type)
{
case parse_type::STRING:
return parse_value_array<std::string>(it, end);
case parse_type::LOCAL_TIME:
return parse_value_array<local_time>(it, end);
case parse_type::LOCAL_DATE:
return parse_value_array<local_date>(it, end);
case parse_type::LOCAL_DATETIME:
return parse_value_array<local_datetime>(it, end);
case parse_type::OFFSET_DATETIME:
return parse_value_array<offset_datetime>(it, end);
case parse_type::INT:
return parse_value_array<int64_t>(it, end);
case parse_type::FLOAT:
return parse_value_array<double>(it, end);
case parse_type::BOOL:
return parse_value_array<bool>(it, end);
case parse_type::ARRAY:
return parse_object_array<array>(&parser::parse_array, '[', it,
end);
case parse_type::INLINE_TABLE:
return parse_object_array<table_array>(
&parser::parse_inline_table, '{', it, end);
default:
throw_parse_exception("Unable to parse array");
}
}
template <class Value>
std::shared_ptr<array> parse_value_array(std::string::iterator& it,
std::string::iterator& end)
{
auto arr = make_array();
while (it != end && *it != ']')
{
auto value = parse_value(it, end);
if (auto v = value->as<Value>())
arr->get().push_back(value);
else
throw_parse_exception("Arrays must be heterogeneous");
skip_whitespace_and_comments(it, end);
if (*it != ',')
break;
++it;
skip_whitespace_and_comments(it, end);
}
if (it != end)
++it;
return arr;
}
template <class Object, class Function>
std::shared_ptr<Object> parse_object_array(Function&& fun, char delim,
std::string::iterator& it,
std::string::iterator& end)
{
auto arr = make_element<Object>();
while (it != end && *it != ']')
{
if (*it != delim)
throw_parse_exception("Unexpected character in array");
arr->get().push_back(((*this).*fun)(it, end));
skip_whitespace_and_comments(it, end);
if (*it != ',')
break;
++it;
skip_whitespace_and_comments(it, end);
}
if (it == end || *it != ']')
throw_parse_exception("Unterminated array");
++it;
return arr;
}
std::shared_ptr<table> parse_inline_table(std::string::iterator& it,
std::string::iterator& end)
{
auto tbl = make_table();
do
{
++it;
if (it == end)
throw_parse_exception("Unterminated inline table");
consume_whitespace(it, end);
parse_key_value(it, end, tbl.get());
consume_whitespace(it, end);
} while (*it == ',');
if (it == end || *it != '}')
throw_parse_exception("Unterminated inline table");
++it;
consume_whitespace(it, end);
return tbl;
}
void skip_whitespace_and_comments(std::string::iterator& start,
std::string::iterator& end)
{
consume_whitespace(start, end);
while (start == end || *start == '#')
{
if (!detail::getline(input_, line_))
throw_parse_exception("Unclosed array");
line_number_++;
start = line_.begin();
end = line_.end();
consume_whitespace(start, end);
}
}
void consume_whitespace(std::string::iterator& it,
const std::string::iterator& end)
{
while (it != end && (*it == ' ' || *it == '\t'))
++it;
}
void consume_backwards_whitespace(std::string::iterator& back,
const std::string::iterator& front)
{
while (back != front && (*back == ' ' || *back == '\t'))
--back;
}
void eol_or_comment(const std::string::iterator& it,
const std::string::iterator& end)
{
if (it != end && *it != '#')
throw_parse_exception("Unidentified trailing character '"
+ std::string{*it}
+ "'---did you forget a '#'?");
}
bool is_time(const std::string::iterator& it,
const std::string::iterator& end)
{
auto time_end = find_end_of_time(it, end);
auto len = std::distance(it, time_end);
if (len < 8)
return false;
if (it[2] != ':' || it[5] != ':')
return false;
if (len > 8)
return it[8] == '.' && len > 9;
return true;
}
option<parse_type> date_type(const std::string::iterator& it,
const std::string::iterator& end)
{
auto date_end = find_end_of_date(it, end);
auto len = std::distance(it, date_end);
if (len < 10)
return {};
if (it[4] != '-' || it[7] != '-')
return {};
if (len >= 19 && it[10] == 'T' && is_time(it + 11, date_end))
{
// datetime type
auto time_end = find_end_of_time(it + 11, date_end);
if (time_end == date_end)
return {parse_type::LOCAL_DATETIME};
else
return {parse_type::OFFSET_DATETIME};
}
else if (len == 10)
{
// just a regular date
return {parse_type::LOCAL_DATE};
}
return {};
}
std::istream& input_;
std::string line_;
std::size_t line_number_ = 0;
};
/**
* Utility function to parse a file as a TOML file. Returns the root table.
* Throws a parse_exception if the file cannot be opened.
*/
inline std::shared_ptr<table> parse_file(const std::string& filename)
{
#if defined(BOOST_NOWIDE_FSTREAM_INCLUDED_HPP)
boost::nowide::ifstream file{filename.c_str()};
#elif defined(NOWIDE_FSTREAM_INCLUDED_HPP)
nowide::ifstream file{filename.c_str()};
#else
std::ifstream file{filename};
#endif
if (!file.is_open())
throw parse_exception{filename + " could not be opened for parsing"};
parser p{file};
return p.parse();
}
template <class... Ts>
struct value_accept;
template <>
struct value_accept<>
{
template <class Visitor, class... Args>
static void accept(const base&, Visitor&&, Args&&...)
{
// nothing
}
};
template <class T, class... Ts>
struct value_accept<T, Ts...>
{
template <class Visitor, class... Args>
static void accept(const base& b, Visitor&& visitor, Args&&... args)
{
if (auto v = b.as<T>())
{
visitor.visit(*v, std::forward<Args>(args)...);
}
else
{
value_accept<Ts...>::accept(b, std::forward<Visitor>(visitor),
std::forward<Args>(args)...);
}
}
};
/**
* base implementation of accept() that calls visitor.visit() on the concrete
* class.
*/
template <class Visitor, class... Args>
void base::accept(Visitor&& visitor, Args&&... args) const
{
if (is_value())
{
using value_acceptor
= value_accept<std::string, int64_t, double, bool, local_date,
local_time, local_datetime, offset_datetime>;
value_acceptor::accept(*this, std::forward<Visitor>(visitor),
std::forward<Args>(args)...);
}
else if (is_table())
{
visitor.visit(static_cast<const table&>(*this),
std::forward<Args>(args)...);
}
else if (is_array())
{
visitor.visit(static_cast<const array&>(*this),
std::forward<Args>(args)...);
}
else if (is_table_array())
{
visitor.visit(static_cast<const table_array&>(*this),
std::forward<Args>(args)...);
}
}
/**
* Writer that can be passed to accept() functions of cpptoml objects and
* will output valid TOML to a stream.
*/
class toml_writer
{
public:
/**
* Construct a toml_writer that will write to the given stream
*/
toml_writer(std::ostream& s, const std::string& indent_space = "\t")
: stream_(s), indent_(indent_space), has_naked_endline_(false)
{
// nothing
}
public:
/**
* Output a base value of the TOML tree.
*/
template <class T>
void visit(const value<T>& v, bool = false)
{
write(v);
}
/**
* Output a table element of the TOML tree
*/
void visit(const table& t, bool in_array = false)
{
write_table_header(in_array);
std::vector<std::string> values;
std::vector<std::string> tables;
for (const auto& i : t)
{
if (i.second->is_table() || i.second->is_table_array())
{
tables.push_back(i.first);
}
else
{
values.push_back(i.first);
}
}
for (unsigned int i = 0; i < values.size(); ++i)
{
path_.push_back(values[i]);
if (i > 0)
endline();
write_table_item_header(*t.get(values[i]));
t.get(values[i])->accept(*this, false);
path_.pop_back();
}
for (unsigned int i = 0; i < tables.size(); ++i)
{
path_.push_back(tables[i]);
if (values.size() > 0 || i > 0)
endline();
write_table_item_header(*t.get(tables[i]));
t.get(tables[i])->accept(*this, false);
path_.pop_back();
}
endline();
}
/**
* Output an array element of the TOML tree
*/
void visit(const array& a, bool = false)
{
write("[");
for (unsigned int i = 0; i < a.get().size(); ++i)
{
if (i > 0)
write(", ");
if (a.get()[i]->is_array())
{
a.get()[i]->as_array()->accept(*this, true);
}
else
{
a.get()[i]->accept(*this, true);
}
}
write("]");
}
/**
* Output a table_array element of the TOML tree
*/
void visit(const table_array& t, bool = false)
{
for (unsigned int j = 0; j < t.get().size(); ++j)
{
if (j > 0)
endline();
t.get()[j]->accept(*this, true);
}
endline();
}
/**
* Escape a string for output.
*/
static std::string escape_string(const std::string& str)
{
std::string res;
for (auto it = str.begin(); it != str.end(); ++it)
{
if (*it == '\b')
{
res += "\\b";
}
else if (*it == '\t')
{
res += "\\t";
}
else if (*it == '\n')
{
res += "\\n";
}
else if (*it == '\f')
{
res += "\\f";
}
else if (*it == '\r')
{
res += "\\r";
}
else if (*it == '"')
{
res += "\\\"";
}
else if (*it == '\\')
{
res += "\\\\";
}
else if (*it >= 0x0000 && *it <= 0x001f)
{
res += "\\u";
std::stringstream ss;
ss << std::hex << static_cast<uint32_t>(*it);
res += ss.str();
}
else
{
res += *it;
}
}
return res;
}
protected:
/**
* Write out a string.
*/
void write(const value<std::string>& v)
{
write("\"");
write(escape_string(v.get()));
write("\"");
}
/**
* Write out a double.
*/
void write(const value<double>& v)
{
std::ios::fmtflags flags{stream_.flags()};
stream_ << std::showpoint;
write(v.get());
stream_.flags(flags);
}
/**
* Write out an integer, local_date, local_time, local_datetime, or
* offset_datetime.
*/
template <class T>
typename std::enable_if<is_one_of<T, int64_t, local_date, local_time,
local_datetime,
offset_datetime>::value>::type
write(const value<T>& v)
{
write(v.get());
}
/**
* Write out a boolean.
*/
void write(const value<bool>& v)
{
write((v.get() ? "true" : "false"));
}
/**
* Write out the header of a table.
*/
void write_table_header(bool in_array = false)
{
if (!path_.empty())
{
indent();
write("[");
if (in_array)
{
write("[");
}
for (unsigned int i = 0; i < path_.size(); ++i)
{
if (i > 0)
{
write(".");
}
if (path_[i].find_first_not_of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
"fghijklmnopqrstuvwxyz0123456789"
"_-")
== std::string::npos)
{
write(path_[i]);
}
else
{
write("\"");
write(escape_string(path_[i]));
write("\"");
}
}
if (in_array)
{
write("]");
}
write("]");
endline();
}
}
/**
* Write out the identifier for an item in a table.
*/
void write_table_item_header(const base& b)
{
if (!b.is_table() && !b.is_table_array())
{
indent();
if (path_.back().find_first_not_of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"
"fghijklmnopqrstuvwxyz0123456789"
"_-")
== std::string::npos)
{
write(path_.back());
}
else
{
write("\"");
write(escape_string(path_.back()));
write("\"");
}
write(" = ");
}
}
private:
/**
* Indent the proper number of tabs given the size of
* the path.
*/
void indent()
{
for (std::size_t i = 1; i < path_.size(); ++i)
write(indent_);
}
/**
* Write a value out to the stream.
*/
template <class T>
void write(const T& v)
{
stream_ << v;
has_naked_endline_ = false;
}
/**
* Write an endline out to the stream
*/
void endline()
{
if (!has_naked_endline_)
{
stream_ << "\n";
has_naked_endline_ = true;
}
}
private:
std::ostream& stream_;
const std::string indent_;
std::vector<std::string> path_;
bool has_naked_endline_;
};
inline std::ostream& operator<<(std::ostream& stream, const base& b)
{
toml_writer writer{stream};
b.accept(writer);
return stream;
}
template <class T>
std::ostream& operator<<(std::ostream& stream, const value<T>& v)
{
toml_writer writer{stream};
v.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const table& t)
{
toml_writer writer{stream};
t.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const table_array& t)
{
toml_writer writer{stream};
t.accept(writer);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const array& a)
{
toml_writer writer{stream};
a.accept(writer);
return stream;
}
}
#endif
################################################################################
## Comment
# Speak your mind with the hash symbol. They go from the symbol to the end of
# the line.
################################################################################
## Table
# Tables (also known as hash tables or dictionaries) are collections of
# key/value pairs. They appear in square brackets on a line by themselves.
[table]
key = "value" # Yeah, you can do this.
# Nested tables are denoted by table names with dots in them. Name your tables
# whatever crap you please, just don't use #, ., [ or ].
[table.subtable]
key = "another value"
# You don't need to specify all the super-tables if you don't want to. TOML
# knows how to do it for you.
# [x] you
# [x.y] don't
# [x.y.z] need these
[x.y.z.w] # for this to work
################################################################################
## Inline Table
# Inline tables provide a more compact syntax for expressing tables. They are
# especially useful for grouped data that can otherwise quickly become verbose.
# Inline tables are enclosed in curly braces `{` and `}`. No newlines are
# allowed between the curly braces unless they are valid within a value.
[table.inline]
name = { first = "Tom", last = "Preston-Werner" }
point = { x = 1, y = 2 }
################################################################################
## String
# There are four ways to express strings: basic, multi-line basic, literal, and
# multi-line literal. All strings must contain only valid UTF-8 characters.
[string.basic]
basic = "I'm a string. \"You can quote me\". Name\tJos\u00E9\nLocation\tSF."
[string.multiline]
# The following strings are byte-for-byte equivalent:
key1 = "One\nTwo"
key2 = """One\nTwo"""
key3 = """
One
Two"""
[string.multiline.continued]
# The following strings are byte-for-byte equivalent:
key1 = "The quick brown fox jumps over the lazy dog."
key2 = """
The quick brown \
fox jumps over \
the lazy dog."""
key3 = """\
The quick brown \
fox jumps over \
the lazy dog.\
"""
[string.literal]
# What you see is what you get.
winpath = 'C:\Users\nodejs\templates'
winpath2 = '\\ServerX\admin$\system32\'
quoted = 'Tom "Dubs" Preston-Werner'
regex = '<\i\c*\s*>'
[string.literal.multiline]
regex2 = '''I [dw]on't need \d{2} apples'''
lines = '''
The first newline is
trimmed in raw strings.
All other whitespace
is preserved.
'''
################################################################################
## Integer
# Integers are whole numbers. Positive numbers may be prefixed with a plus sign.
# Negative numbers are prefixed with a minus sign.
[integer]
key1 = +99
key2 = 42
key3 = 0
key4 = -17
[integer.underscores]
# For large numbers, you may use underscores to enhance readability. Each
# underscore must be surrounded by at least one digit.
key1 = 1_000
key2 = 5_349_221
key3 = 1_2_3_4_5 # valid but inadvisable
################################################################################
## Float
# A float consists of an integer part (which may be prefixed with a plus or
# minus sign) followed by a fractional part and/or an exponent part.
[float.fractional]
key1 = +1.0
key2 = 3.1415
key3 = -0.01
[float.exponent]
key1 = 5e+22
key2 = 1e6
key3 = -2E-2
[float.both]
key = 6.626e-34
[float.underscores]
key1 = 9_224_617.445_991_228_313
################################################################################
## Boolean
# Booleans are just the tokens you're used to. Always lowercase.
[boolean]
True = true
False = false
################################################################################
## Datetime
# Datetimes are RFC 3339 dates.
[datetime]
key1 = 1979-05-27T07:32:00Z
key2 = 1979-05-27T00:32:00-07:00
key3 = 1979-05-27T00:32:00.999999-07:00
################################################################################
## Array
# Arrays are square brackets with other primitives inside. Whitespace is
# ignored. Elements are separated by commas. Data types may not be mixed.
[array]
key1 = [ 1, 2, 3 ]
key2 = [ "red", "yellow", "green" ]
key3 = [ [ 1, 2 ], [3, 4, 5] ]
key4 = [ [ 1, 2 ], ["a", "b", "c"] ] # this is ok
# Arrays can also be multiline. So in addition to ignoring whitespace, arrays
# also ignore newlines between the brackets. Terminating commas are ok before
# the closing bracket.
key5 = [
1, 2, 3
]
key6 = [
1,
2, # this is ok
]
################################################################################
## Array of Tables
# These can be expressed by using a table name in double brackets. Each table
# with the same double bracketed name will be an element in the array. The
# tables are inserted in the order encountered.
[[products]]
name = "Hammer"
sku = 738594937
[[products]]
[[products]]
name = "Nail"
sku = 284758393
color = "gray"
# You can create nested arrays of tables as well.
[[fruit]]
name = "apple"
[fruit.physical]
color = "red"
shape = "round"
[[fruit.variety]]
name = "red delicious"
[[fruit.variety]]
name = "granny smith"
[[fruit]]
name = "banana"
[[fruit.variety]]
name = "plantain"
# include <Siv3D.hpp> // OpenSiv3D v0.1.6
# include "cpptoml.h"
namespace toml
{
class TOMLValue;
}
namespace s3d
{
void Formatter(FormatData& formatData, const toml::TOMLValue& value);
}
namespace toml {
enum class TOMLValueType {
Empty,
Table,
Array,
TableArray,
String,
Number,
Bool,
Date,
DateTime,
Unknown
};
class TOMLValue;
struct TOMLTableMember;
class TOMLTableIterator
{
private:
cpptoml::table::iterator m_detail;
public:
TOMLTableIterator() = default;
explicit TOMLTableIterator(const cpptoml::table::iterator& itr)
: m_detail(itr) {}
TOMLTableIterator operator ++()
{
++m_detail;
return *this;
}
TOMLTableIterator operator ++(int)
{
auto tmp = m_detail;
++m_detail;
return TOMLTableIterator(tmp);
}
TOMLTableMember operator *() const;
bool operator ==(const TOMLTableIterator& other) const noexcept
{
return m_detail == other.m_detail;
}
bool operator !=(const TOMLTableIterator& other) const noexcept
{
return m_detail != other.m_detail;
}
};
class TOMLTableView
{
private:
TOMLTableIterator m_begin, m_end;
public:
TOMLTableView() = default;
TOMLTableView(const TOMLTableIterator& begin, const TOMLTableIterator& end) noexcept
: m_begin(begin)
, m_end(end) {}
TOMLTableIterator begin() const
{
return m_begin;
}
TOMLTableIterator end() const
{
return m_end;
}
};
class TOMLArrayIterator
{
private:
cpptoml::array::iterator m_detail;
public:
TOMLArrayIterator() = default;
explicit TOMLArrayIterator(const cpptoml::array::iterator& itr)
: m_detail(itr) {}
TOMLArrayIterator operator ++()
{
++m_detail;
return *this;
}
TOMLArrayIterator operator ++(int)
{
auto tmp = m_detail;
++m_detail;
return TOMLArrayIterator(tmp);
}
TOMLArrayIterator operator +(size_t index) const
{
return TOMLArrayIterator(m_detail + index);
}
TOMLValue operator *() const;
bool operator ==(const TOMLArrayIterator& other) const noexcept
{
return m_detail == other.m_detail;
}
bool operator !=(const TOMLArrayIterator& other) const noexcept
{
return m_detail != other.m_detail;
}
};
class TOMLArrayView
{
private:
TOMLArrayIterator m_begin, m_end;
public:
TOMLArrayView() = default;
TOMLArrayView(cpptoml::array::iterator begin, cpptoml::array::iterator end) noexcept
: m_begin(begin)
, m_end(end) {}
TOMLArrayIterator begin() const
{
return m_begin;
}
TOMLArrayIterator end() const
{
return m_end;
}
TOMLValue operator [](size_t index) const;
};
class TOMLTableArrayIterator
{
private:
cpptoml::table_array::iterator m_detail;
public:
TOMLTableArrayIterator() = default;
explicit TOMLTableArrayIterator(const cpptoml::table_array::iterator& itr)
: m_detail(itr) {}
TOMLTableArrayIterator operator ++()
{
++m_detail;
return *this;
}
TOMLTableArrayIterator operator ++(int)
{
auto tmp = m_detail;
++m_detail;
return TOMLTableArrayIterator(tmp);
}
TOMLTableArrayIterator operator +(size_t index) const
{
return TOMLTableArrayIterator(m_detail + index);
}
TOMLValue operator *() const;
bool operator ==(const TOMLTableArrayIterator& other) const noexcept
{
return m_detail == other.m_detail;
}
bool operator !=(const TOMLTableArrayIterator& other) const noexcept
{
return m_detail != other.m_detail;
}
};
class TOMLTableArrayView
{
private:
TOMLTableArrayIterator m_begin, m_end;
public:
TOMLTableArrayView() = default;
TOMLTableArrayView(cpptoml::table_array::iterator begin, cpptoml::table_array::iterator end) noexcept
: m_begin(begin)
, m_end(end) {}
TOMLTableArrayIterator begin() const
{
return m_begin;
}
TOMLTableArrayIterator end() const
{
return m_end;
}
TOMLValue operator [](size_t index) const;
};
class TOMLValue
{
protected:
std::shared_ptr<cpptoml::base> m_detail;
template<class Type, std::enable_if_t<!std::is_integral<Type>::value>* = nullptr>
Optional<Type> getOpt_() const
{
if (auto p = m_detail->as<Type>())
{
return p->get();
}
return none;
}
template <class Type, std::enable_if_t<std::is_integral<Type>::value>* = nullptr>
Optional<Type> getOpt_() const
{
if (auto p = m_detail->as<bool>())
{
return p->get();
}
if (auto p = m_detail->as<int64_t>())
{
return static_cast<Type>(p->get());
}
if (auto p = m_detail->as<double>())
{
return static_cast<Type>(p->get());
}
return none;
}
friend void s3d::Formatter(FormatData& formatData, const TOMLValue& value);
struct Visitor
{
String& str;
template <typename Type>
void visit(Type&& val) const
{
std::stringstream ss;
ss << val;
str = CharacterSet::FromUTF8(ss.str());
}
};
public:
TOMLValue()
: m_detail(nullptr) {}
explicit TOMLValue(const std::shared_ptr<cpptoml::base>& p)
: m_detail(p) {}
template <typename Type>
Type get() const
{
return getOpt<Type>().value_or(Type());
}
template <typename Type, typename U>
Type getOr(U&& defaultValue) const
{
return getOpt<Type>().value_or(std::forward<U>(defaultValue));
}
template <typename Type>
Optional<Type> getOpt() const
{
return getOpt_<Type>();
}
bool isEmpty() const
{
return m_detail == nullptr;
}
TOMLValueType getType() const
{
if (isEmpty())
{
return TOMLValueType::Empty;
}
if (m_detail->is_table())
{
return TOMLValueType::Table;
}
if (m_detail->is_array())
{
return TOMLValueType::Array;
}
if (m_detail->is_table_array())
{
return TOMLValueType::TableArray;
}
if (m_detail->is_value())
{
if (m_detail->as<std::string>())
{
return TOMLValueType::String;
}
if (m_detail->as<double>())
{
return TOMLValueType::Number;
}
if (m_detail->as<bool>())
{
return TOMLValueType::Bool;
}
if (m_detail->as<cpptoml::local_date>())
{
return TOMLValueType::Date;
}
return TOMLValueType::DateTime;
}
return TOMLValueType::Unknown;
}
bool isTable() const
{
return getType() == TOMLValueType::Table;
}
bool isArray() const
{
return getType() == TOMLValueType::Array;
}
bool isTableArray() const
{
return getType() == TOMLValueType::TableArray;
}
bool isString() const
{
return getType() == TOMLValueType::String;
}
bool isBool() const
{
return getType() == TOMLValueType::Bool;
}
bool isNumber() const
{
return getType() == TOMLValueType::Number;
}
bool isDate() const
{
return getType() == TOMLValueType::Date;
}
bool isDateTime() const
{
return getType() == TOMLValueType::DateTime;
}
////////////////////////////////
//
// Table
//
size_t memberCount() const
{
if (isEmpty())
{
return 0;
}
if (auto&& table = m_detail->as_table())
{
return table->size();
}
return 0;
}
bool hasMember(const String& name) const
{
if (isEmpty())
{
return false;
}
if (auto&& table = m_detail->as_table())
{
return table->contains(name.toUTF8());
}
return false;
}
TOMLTableView tableView() const
{
if (isEmpty())
{
return TOMLTableView();
}
if (auto&& table = m_detail->as_table())
{
return TOMLTableView(TOMLTableIterator(table->begin()), TOMLTableIterator(table->end()));
}
return TOMLTableView();
}
TOMLValue operator [](const String& path) const
{
if (isEmpty())
{
return TOMLValue();
}
if (auto&& table = m_detail->as_table())
{
try
{
return TOMLValue(table->get_qualified(path.toUTF8()));
}
catch (...)
{
return TOMLValue();
}
}
return TOMLValue();
}
////////////////////////////////
//
// Array/TableArray
//
size_t arrayCount() const
{
if (isEmpty())
{
return 0;
}
if (auto&& arr = m_detail->as_array())
{
return arr->get().size();
}
if (auto&& arr = m_detail->as_table_array())
{
return arr->get().size();
}
return 0;
}
TOMLArrayView arrayView() const
{
if (isEmpty())
{
return TOMLArrayView();
}
if (auto&& arr = m_detail->as_array())
{
return TOMLArrayView(arr->begin(), arr->end());
}
return TOMLArrayView();
}
TOMLTableArrayView tableArrayView() const
{
if (isEmpty())
{
return TOMLTableArrayView();
}
if (auto&& arr = m_detail->as_table_array())
{
return TOMLTableArrayView(arr->begin(), arr->end());
}
return TOMLTableArrayView();
}
////////////////////////////////
//
// String
//
String getString() const
{
if (isEmpty())
{
return String();
}
if (auto&& str = m_detail->as<std::string>())
{
return CharacterSet::FromUTF8(str->get());
}
return String();
}
////////////////////////////////
//
// Date
//
Date getDate()
{
if (isEmpty())
{
return Date();
}
if (auto&& date_ = m_detail->as<cpptoml::local_date>())
{
auto&& date = date_->get();
return Date(date.year, date.month, date.day);
}
return Date();
}
////////////////////////////////
//
// DateTime
//
DateTime getDateTime()
{
if (isEmpty())
{
return DateTime();
}
if (auto&& dateTime_ = m_detail->as<cpptoml::offset_datetime>())
{
auto& dateTime = dateTime_->get();
const int32 offset = dateTime.hour_offset * 60 + dateTime.minute_offset;
DateTime ret(
dateTime.year,
dateTime.month,
dateTime.day,
dateTime.hour,
dateTime.minute,
dateTime.second,
dateTime.microsecond / 1000
);
ret += std::chrono::minutes(Time::UtcOffsetMinutes() - offset);
return ret;
}
if (auto&& localDateTime_ = m_detail->as<cpptoml::local_datetime>())
{
auto& localDateTime = localDateTime_->get();
return DateTime(
localDateTime.year,
localDateTime.month,
localDateTime.day,
localDateTime.hour,
localDateTime.minute,
localDateTime.second,
localDateTime.microsecond / 1000
);
}
return DateTime();
}
};
TOMLValue TOMLArrayIterator::operator *() const
{
return TOMLValue(*m_detail);
}
TOMLValue TOMLArrayView::operator [](size_t index) const
{
return TOMLValue(*(m_begin + index));
}
TOMLValue TOMLTableArrayIterator::operator *() const
{
return TOMLValue(*m_detail);
}
TOMLValue TOMLTableArrayView::operator [](size_t index) const
{
return TOMLValue(*(m_begin + index));
}
struct TOMLTableMember
{
String name;
TOMLValue value;
};
TOMLTableMember TOMLTableIterator::operator *() const
{
return { CharacterSet::FromUTF8(m_detail->first), TOMLValue(m_detail->second) };
}
class TOMLReader : public TOMLValue
{
public:
TOMLReader()
: TOMLValue() {}
explicit TOMLReader(const FilePath& path)
: TOMLReader()
{
open(path);
}
template <typename Reader, std::enable_if_t<std::is_base_of<IReader, Reader>::value && !std::is_lvalue_reference<Reader>::value, nullptr_t>* = nullptr>
explicit TOMLReader(Reader&& reader)
: TOMLReader()
{
open(std::forward<Reader>(reader));
}
explicit TOMLReader(const std::shared_ptr<IReader>& reader)
: TOMLReader()
{
open(reader);
}
bool open(const FilePath& path)
{
try {
m_detail = cpptoml::parse_file(path.toUTF8());
}
catch (...) {
return false;
}
return !isEmpty();
}
bool open(const std::shared_ptr<IReader>& reader)
{
if (isOpened())
{
close();
}
std::stringstream ss;
ss << TextReader(reader).readAll();
try {
m_detail = cpptoml::parser(ss).parse();
}
catch (...) {
return false;
}
return m_detail != nullptr;
}
void close()
{
m_detail.reset();
}
bool isOpened() const
{
return m_detail != nullptr;
}
explicit operator bool() const
{
return isOpened();
}
};
}
namespace s3d
{
void Formatter(FormatData& formatData, const toml::TOMLValue& value)
{
if (value.isEmpty())
{
return;
}
String str;
value.m_detail->accept(toml::TOMLValue::Visitor{ str });
formatData.string.append(str.c_str());
}
void Formatter(FormatData& formatData, const toml::TOMLReader& reader)
{
if (reader.isEmpty())
{
return;
}
Formatter(formatData, static_cast<toml::TOMLValue>(reader));
}
}
void Main()
{
Window::Resize(640, 640);
const toml::TOMLReader reader(L"example.toml");
while (System::Update())
{
if (!reader)
{
Print << L"Failed to load.";
continue;
}
Print << L"\n";
// key access
Print << L"table.key = " << reader[L"table"][L"key"].getString();
// chained key access
Print << L"table.subtable.key = " << reader[L"table.subtable.key"].getString();
// each table access and get integer
for (auto&& p : reader[L"integer"].tableView())
{
if (p.value.isNumber())
{
Print << L"integer." + p.name + L" = " << p.value.get<int64>();
}
}
// get floating number
Print << L"float.fractional.key1 = " << reader[L"float.fractional.key1"].get<double>();
// get boolean
Print << L"boolean.True = " << reader[L"boolean.True"].get<bool>();
// get datetime
Print << L"datetime.key1 = " << reader[L"datetime.key1"].getDateTime();
// get array (and formatting)
Print << L"array.key1 = " << reader[L"array.key1"];
// get table array
Print << L"products = {";
for (auto&& t : reader[L"products"].tableArrayView())
{
Print << L"\t{";
for (auto&& e : t.tableView())
{
Print << L"\t\t" << e.value << L",";
}
Print << L"\t},";
}
Print << L"}";
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment