forked from enjalot's block: morph experiment #1
Last active
September 20, 2016 22:16
-
-
Save baiIey/e5d7be1cbd705e5dee310895854d2c85 to your computer and use it in GitHub Desktop.
squared()
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
license: mit |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<head> | |
<meta charset="utf-8"> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script> | |
<script src="sampler.js"></script> | |
<script src="matrix.js"></script> | |
<script src="polyk.js"></script> | |
</head> | |
<style> | |
body { | |
background-color: #fff; | |
} | |
</style> | |
<body> | |
<svg width=960 height=500> | |
<g transform="translate(-50,0)" opacity=0> | |
<path id="outer" fill="none" stroke="#fff" stroke-width="0.8" stroke-miterlimit="10" d="M174.7,85c-24.5,14-57,18-45.8,45.7 | |
c9.5,23.4-28.2,15.1-45.8-25.7s20.5-65.8,45.8-65.8S196.7,72.5,174.7,85Z"/> | |
<path id="inner" fill="none" stroke="#fff" stroke-width="0.8" stroke-miterlimit="10" d="M128.4,64.4c-1.9-0.1-5.9,6-5.9,6s-2.3-3.6-1-7.4 | |
c1.4-3.8,3.4-3.5,5-3.1C128.3,60.2,141.8,65.1,128.4,64.4z"/> | |
</g> | |
<g id="output"> | |
</g> | |
</svg> | |
<script> | |
var svg = d3.select("svg"); | |
var inner = d3.select("#inner") | |
var outer = d3.select("#outer") | |
var numSamples = 10; | |
var numLines = 5; | |
var scale = 1.5; | |
var line = d3.svg.line() | |
.x(function(d) { return d.x }) | |
.y(function(d) { return d.y }) | |
.interpolate("linear-closed") | |
//.interpolate("cardinal-closed") | |
//.interpolate("basis-closed") | |
var output = d3.select("#output") | |
function interpolate(rotate) { | |
//var ins = Sampler.getSamples(inner.node(), numSamples); | |
//var outs = Sampler.getSamples(outer.node(), numSamples); | |
var ins = generateRect(20, 100, 99, 62, 63) | |
var outs = generateRect(20, 0, 0, 310, 310) | |
var c = centroid(ins); | |
var zeroer = new Matrix() | |
.scale(1) | |
.rotate(0) | |
.translate(-c.x, -c.y) // we center our shapes on 0,0 to rotate about center | |
var morpher = new Matrix() | |
//.scale(scale) | |
.rotate(-rotate) | |
var placer = new Matrix() | |
.translate(450, 225) | |
ins.forEach(function(d) { | |
transformer(d, zeroer) | |
transformer(d, placer) | |
}) | |
outs.forEach(function(d) { | |
transformer(d, zeroer); | |
transformer(d, morpher) | |
transformer(d, placer); | |
}) | |
var lines = []; | |
d3.range(numLines+1).forEach(function(index) { | |
var samples = [] | |
var ratio = index / numLines; | |
var i, x, y; | |
var last; | |
if(index === 0) { | |
last = ins; | |
} else { | |
last = lines[index - 1]; | |
} | |
for(i = 0; i < last.length; i++) { | |
// TODO: better interpolation? | |
x = ins[i].x * (1 - ratio) + outs[i].x * ratio; | |
y = ins[i].y * (1 - ratio) + outs[i].y * ratio; | |
var p = {x: x, y: y} | |
samples.push(p) | |
} | |
lines.push(samples) | |
}) | |
//verify center | |
transformer(c, zeroer) | |
transformer(c, placer) | |
output.append("circle") | |
.attr({ | |
r: 5, | |
fill: "#212121", | |
cx: c.x, | |
cy: c.y | |
}) | |
// draw the lines we are interpolating along | |
var interps = output.selectAll("line") | |
.data(ins) | |
interps | |
.enter().append("line") | |
interps | |
.attr({ | |
x1: function(d,i) { return d.x }, | |
y1: function(d,i) { return d.y }, | |
x2: function(d,i) { return outs[i].x }, | |
y2: function(d,i) { return outs[i].y }, | |
stroke: "#E0E0E0", | |
"stroke-width": 1 | |
}) | |
var blended = output.selectAll("path.blend") | |
.data(lines) | |
blended | |
.enter() | |
.append("path").classed("blend", true) | |
blended | |
.attr({ | |
d: function(d) { return line(d) }, | |
fill: "none", | |
stroke: "#212121", | |
"stroke-width": 2, | |
}) | |
var groups = output.selectAll("g.line").data(lines) | |
groups | |
.enter().append("g").classed("line", true) | |
var circles = groups | |
.selectAll("circle") | |
.data(function(d) { return d }) | |
circles | |
.enter().append("circle") | |
circles | |
.attr({ | |
r: 3, | |
fill: "white", | |
cx: function(d) { return d.x }, | |
cy: function(d) { return d.y } | |
}) | |
} | |
interpolate(90); | |
function generateRect(num, x, y, width, height) { | |
var points = [] | |
var sideNum = Math.floor(num/4) + 1; | |
// top | |
d3.range(sideNum).forEach(function(i) { | |
points.push({ x: x + i * width/sideNum, y: y }) | |
}) | |
// right | |
d3.range(sideNum).forEach(function(i) { | |
points.push({ x: x + width, y: y + i * height/sideNum }) | |
}) | |
// bottom | |
d3.range(sideNum).forEach(function(i) { | |
points.push({ x: x + width - i * width/sideNum, y: y + height }) | |
}) | |
// left | |
d3.range(sideNum).forEach(function(i) { | |
points.push({ x: x, y: y + height - i * height/sideNum }) | |
}) | |
return points; | |
} | |
// "electron" dial component. TODO: componentize | |
var cx = 75; | |
var cy = 75; | |
var radius = 50 | |
var ring = svg.append("circle") | |
.attr({ | |
cx: cx, | |
cy: cy, | |
r: radius, | |
fill: "none", | |
stroke: "#E0E0E0", | |
"stroke-width": 4 | |
}); | |
var electron = svg.append("circle") | |
.attr({ | |
cx: cx + radius, | |
cy: cy, | |
r: 10, | |
fill: "#212121" | |
}); | |
var drag = d3.behavior.drag() | |
.on("drag", function() { | |
var mx = d3.mouse(this)[0]; | |
var my = d3.mouse(this)[1]; | |
var omega = Math.atan2(mx - cx, my - cy); | |
var nx = radius * Math.sin(omega); | |
var ny = radius * Math.cos(omega); | |
electron.attr({ | |
cx: cx + nx, | |
cy: cy + ny | |
}) | |
interpolate(omega*180/Math.PI) | |
}) | |
electron.call(drag); | |
</script> | |
</body> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function Matrix() { | |
/* http://bl.ocks.org/enjalot/65ae9c0fc95337107448 | |
| a, b, tx | | |
| c, d, ty | | |
| 0, 0, 1 | | |
*/ | |
this.a = 1; | |
this.b = 0; | |
this.c = 0; | |
this.d = 1; | |
this.tx = 0; | |
this.ty = 0; | |
this.s = 1; | |
this.ra = 1; | |
this.rb = 0; | |
this.rc = 0; | |
this.rd = 1; | |
} | |
Matrix.prototype.scale = function(s) { | |
this.s = s; | |
this.a *= s; | |
this.d *= s; | |
return this; | |
} | |
Matrix.prototype.translate = function(x,y) { | |
this.tx = x; | |
this.ty = y; | |
return this; | |
} | |
Matrix.prototype.rotate = function(deg) { | |
var sin = Math.sin(deg*Math.PI/180).toFixed(3); | |
var cos = Math.cos(deg*Math.PI/180).toFixed(3); | |
this.ra = cos; | |
this.rb = -sin; | |
this.rc = sin; | |
this.rd = cos; | |
this.update(); | |
return this; | |
} | |
Matrix.prototype.update = function() { | |
this.a = this.ra * this.s; | |
this.b = this.rb * this.s; | |
this.c = this.rc * this.s; | |
this.d = this.rd * this.s; | |
return this; | |
} | |
function transformer(p, m){ | |
// transform point | |
var x = p.x || 0; | |
var y = p.y || 0; | |
var x2 = m.a*x + m.b*y + m.tx; | |
var y2 = m.c*x + m.d*y + m.ty; | |
p.x = x2; | |
p.y = y2; | |
//return {x:x2, y:y2}; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
PolyK library | |
url: http://polyk.ivank.net | |
Released under MIT licence. | |
Copyright (c) 2012 - 2014 Ivan Kuckir | |
Permission is hereby granted, free of charge, to any person | |
obtaining a copy of this software and associated documentation | |
files (the "Software"), to deal in the Software without | |
restriction, including without limitation the rights to use, | |
copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the | |
Software is furnished to do so, subject to the following | |
conditions: | |
The above copyright notice and this permission notice shall be | |
included in all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
OTHER DEALINGS IN THE SOFTWARE. | |
19. 5. 2014 - Problem with slicing fixed. | |
*/ | |
var PolyK = {}; | |
/* | |
Is Polygon self-intersecting? | |
O(n^2) | |
*/ | |
PolyK.IsSimple = function(p) | |
{ | |
var n = p.length>>1; | |
if(n<4) return true; | |
var a1 = new PolyK._P(), a2 = new PolyK._P(); | |
var b1 = new PolyK._P(), b2 = new PolyK._P(); | |
var c = new PolyK._P(); | |
for(var i=0; i<n; i++) | |
{ | |
a1.x = p[2*i ]; | |
a1.y = p[2*i+1]; | |
if(i==n-1) { a2.x = p[0 ]; a2.y = p[1 ]; } | |
else { a2.x = p[2*i+2]; a2.y = p[2*i+3]; } | |
for(var j=0; j<n; j++) | |
{ | |
if(Math.abs(i-j) < 2) continue; | |
if(j==n-1 && i==0) continue; | |
if(i==n-1 && j==0) continue; | |
b1.x = p[2*j ]; | |
b1.y = p[2*j+1]; | |
if(j==n-1) { b2.x = p[0 ]; b2.y = p[1 ]; } | |
else { b2.x = p[2*j+2]; b2.y = p[2*j+3]; } | |
if(PolyK._GetLineIntersection(a1,a2,b1,b2,c) != null) return false; | |
} | |
} | |
return true; | |
} | |
PolyK.IsConvex = function(p) | |
{ | |
if(p.length<6) return true; | |
var l = p.length - 4; | |
for(var i=0; i<l; i+=2) | |
if(!PolyK._convex(p[i], p[i+1], p[i+2], p[i+3], p[i+4], p[i+5])) return false; | |
if(!PolyK._convex(p[l ], p[l+1], p[l+2], p[l+3], p[0], p[1])) return false; | |
if(!PolyK._convex(p[l+2], p[l+3], p[0 ], p[1 ], p[2], p[3])) return false; | |
return true; | |
} | |
PolyK.GetArea = function(p) | |
{ | |
if(p.length <6) return 0; | |
var l = p.length - 2; | |
var sum = 0; | |
for(var i=0; i<l; i+=2) | |
sum += (p[i+2]-p[i]) * (p[i+1]+p[i+3]); | |
sum += (p[0]-p[l]) * (p[l+1]+p[1]); | |
return - sum * 0.5; | |
} | |
PolyK.GetAABB = function(p) | |
{ | |
var minx = Infinity; | |
var miny = Infinity; | |
var maxx = -minx; | |
var maxy = -miny; | |
for(var i=0; i<p.length; i+=2) | |
{ | |
minx = Math.min(minx, p[i ]); | |
maxx = Math.max(maxx, p[i ]); | |
miny = Math.min(miny, p[i+1]); | |
maxy = Math.max(maxy, p[i+1]); | |
} | |
return {x:minx, y:miny, width:maxx-minx, height:maxy-miny}; | |
} | |
PolyK.Reverse = function(p) | |
{ | |
var np = []; | |
for(var j=p.length-2; j>=0; j-=2) np.push(p[j], p[j+1]) | |
return np; | |
} | |
PolyK.Triangulate = function(p) | |
{ | |
var n = p.length>>1; | |
if(n<3) return []; | |
var tgs = []; | |
var avl = []; | |
for(var i=0; i<n; i++) avl.push(i); | |
var i = 0; | |
var al = n; | |
while(al > 3) | |
{ | |
var i0 = avl[(i+0)%al]; | |
var i1 = avl[(i+1)%al]; | |
var i2 = avl[(i+2)%al]; | |
var ax = p[2*i0], ay = p[2*i0+1]; | |
var bx = p[2*i1], by = p[2*i1+1]; | |
var cx = p[2*i2], cy = p[2*i2+1]; | |
var earFound = false; | |
if(PolyK._convex(ax, ay, bx, by, cx, cy)) | |
{ | |
earFound = true; | |
for(var j=0; j<al; j++) | |
{ | |
var vi = avl[j]; | |
if(vi==i0 || vi==i1 || vi==i2) continue; | |
if(PolyK._PointInTriangle(p[2*vi], p[2*vi+1], ax, ay, bx, by, cx, cy)) {earFound = false; break;} | |
} | |
} | |
if(earFound) | |
{ | |
tgs.push(i0, i1, i2); | |
avl.splice((i+1)%al, 1); | |
al--; | |
i= 0; | |
} | |
else if(i++ > 3*al) break; // no convex angles :( | |
} | |
tgs.push(avl[0], avl[1], avl[2]); | |
return tgs; | |
} | |
PolyK.ContainsPoint = function(p, px, py) | |
{ | |
var n = p.length>>1; | |
var ax, ay = p[2*n-3]-py, bx = p[2*n-2]-px, by = p[2*n-1]-py; | |
//var lup = by > ay; | |
for(var i=0; i<n; i++) | |
{ | |
ax = bx; ay = by; | |
bx = p[2*i ] - px; | |
by = p[2*i+1] - py; | |
if(ay==by) continue; | |
lup = by>ay; | |
} | |
var depth = 0; | |
for(var i=0; i<n; i++) | |
{ | |
ax = bx; ay = by; | |
bx = p[2*i ] - px; | |
by = p[2*i+1] - py; | |
if(ay< 0 && by< 0) continue; // both "up" or both "down" | |
if(ay> 0 && by> 0) continue; // both "up" or both "down" | |
if(ax< 0 && bx< 0) continue; // both points on the left | |
if(ay==by && Math.min(ax,bx)<=0) return true; | |
if(ay==by) continue; | |
var lx = ax + (bx-ax)*(-ay)/(by-ay); | |
if(lx==0) return true; // point on edge | |
if(lx> 0) depth++; | |
if(ay==0 && lup && by>ay) depth--; // hit vertex, both up | |
if(ay==0 && !lup && by<ay) depth--; // hit vertex, both down | |
lup = by>ay; | |
} | |
//console.log(depth); | |
return (depth & 1) == 1; | |
} | |
PolyK.Slice = function(p, ax, ay, bx, by) | |
{ | |
if(PolyK.ContainsPoint(p, ax, ay) || PolyK.ContainsPoint(p, bx, by)) return [p.slice(0)]; | |
var a = new PolyK._P(ax, ay); | |
var b = new PolyK._P(bx, by); | |
var iscs = []; // intersections | |
var ps = []; // points | |
for(var i=0; i<p.length; i+=2) ps.push(new PolyK._P(p[i], p[i+1])); | |
for(var i=0; i<ps.length; i++) | |
{ | |
var isc = new PolyK._P(0,0); | |
isc = PolyK._GetLineIntersection(a, b, ps[i], ps[(i+1)%ps.length], isc); | |
var fisc = iscs[0]; | |
var lisc = iscs[iscs.length-1]; | |
if(isc && (fisc==null || PolyK._P.dist(isc,fisc)>1e-10) && (lisc==null || PolyK._P.dist(isc,lisc)>1e-10 ) )//&& (isc.x!=ps[i].x || isc.y!=ps[i].y) ) | |
{ | |
isc.flag = true; | |
iscs.push(isc); | |
ps.splice(i+1,0,isc); | |
i++; | |
} | |
} | |
if(iscs.length <2) return [p.slice(0)]; | |
var comp = function(u,v) { return PolyK._P.dist(a,u) - PolyK._P.dist(a,v); } | |
iscs.sort(comp); | |
//console.log("Intersections: "+iscs.length, JSON.stringify(iscs)); | |
var pgs = []; | |
var dir = 0; | |
while(iscs.length > 0) | |
{ | |
var n = ps.length; | |
var i0 = iscs[0]; | |
var i1 = iscs[1]; | |
//if(i0.x==i1.x && i0.y==i1.y) { iscs.splice(0,2); continue;} | |
var ind0 = ps.indexOf(i0); | |
var ind1 = ps.indexOf(i1); | |
var solved = false; | |
//console.log(i0, i1); | |
if(PolyK._firstWithFlag(ps, ind0) == ind1) solved = true; | |
else | |
{ | |
i0 = iscs[1]; | |
i1 = iscs[0]; | |
ind0 = ps.indexOf(i0); | |
ind1 = ps.indexOf(i1); | |
if(PolyK._firstWithFlag(ps, ind0) == ind1) solved = true; | |
} | |
if(solved) | |
{ | |
dir--; | |
var pgn = PolyK._getPoints(ps, ind0, ind1); | |
pgs.push(pgn); | |
ps = PolyK._getPoints(ps, ind1, ind0); | |
i0.flag = i1.flag = false; | |
iscs.splice(0,2); | |
if(iscs.length == 0) pgs.push(ps); | |
} | |
else { dir++; iscs.reverse(); } | |
if(dir>1) break; | |
} | |
var result = []; | |
for(var i=0; i<pgs.length; i++) | |
{ | |
var pg = pgs[i]; | |
var npg = []; | |
for(var j=0; j<pg.length; j++) npg.push(pg[j].x, pg[j].y); | |
result.push(npg); | |
} | |
return result; | |
} | |
PolyK.Raycast = function(p, x, y, dx, dy, isc) | |
{ | |
var l = p.length - 2; | |
var tp = PolyK._tp; | |
var a1 = tp[0], a2 = tp[1], | |
b1 = tp[2], b2 = tp[3], c = tp[4]; | |
a1.x = x; a1.y = y; | |
a2.x = x+dx; a2.y = y+dy; | |
if(isc==null) isc = {dist:0, edge:0, norm:{x:0, y:0}, refl:{x:0, y:0}}; | |
isc.dist = Infinity; | |
for(var i=0; i<l; i+=2) | |
{ | |
b1.x = p[i ]; b1.y = p[i+1]; | |
b2.x = p[i+2]; b2.y = p[i+3]; | |
var nisc = PolyK._RayLineIntersection(a1, a2, b1, b2, c); | |
if(nisc) PolyK._updateISC(dx, dy, a1, b1, b2, c, i/2, isc); | |
} | |
b1.x = b2.x; b1.y = b2.y; | |
b2.x = p[0]; b2.y = p[1]; | |
var nisc = PolyK._RayLineIntersection(a1, a2, b1, b2, c); | |
if(nisc) PolyK._updateISC(dx, dy, a1, b1, b2, c, (p.length/2)-1, isc); | |
return (isc.dist != Infinity) ? isc : null; | |
} | |
PolyK.ClosestEdge = function(p, x, y, isc) | |
{ | |
var l = p.length - 2; | |
var tp = PolyK._tp; | |
var a1 = tp[0], | |
b1 = tp[2], b2 = tp[3], c = tp[4]; | |
a1.x = x; a1.y = y; | |
if(isc==null) isc = {dist:0, edge:0, point:{x:0, y:0}, norm:{x:0, y:0}}; | |
isc.dist = Infinity; | |
for(var i=0; i<l; i+=2) | |
{ | |
b1.x = p[i ]; b1.y = p[i+1]; | |
b2.x = p[i+2]; b2.y = p[i+3]; | |
PolyK._pointLineDist(a1, b1, b2, i>>1, isc); | |
} | |
b1.x = b2.x; b1.y = b2.y; | |
b2.x = p[0]; b2.y = p[1]; | |
PolyK._pointLineDist(a1, b1, b2, l>>1, isc); | |
var idst = 1/isc.dist; | |
isc.norm.x = (x-isc.point.x)*idst; | |
isc.norm.y = (y-isc.point.y)*idst; | |
return isc; | |
} | |
PolyK._pointLineDist = function(p, a, b, edge, isc) | |
{ | |
var x = p.x, y = p.y, x1 = a.x, y1 = a.y, x2 = b.x, y2 = b.y; | |
var A = x - x1; | |
var B = y - y1; | |
var C = x2 - x1; | |
var D = y2 - y1; | |
var dot = A * C + B * D; | |
var len_sq = C * C + D * D; | |
var param = dot / len_sq; | |
var xx, yy; | |
if (param < 0 || (x1 == x2 && y1 == y2)) { | |
xx = x1; | |
yy = y1; | |
} | |
else if (param > 1) { | |
xx = x2; | |
yy = y2; | |
} | |
else { | |
xx = x1 + param * C; | |
yy = y1 + param * D; | |
} | |
var dx = x - xx; | |
var dy = y - yy; | |
var dst = Math.sqrt(dx * dx + dy * dy); | |
if(dst<isc.dist) | |
{ | |
isc.dist = dst; | |
isc.edge = edge; | |
isc.point.x = xx; | |
isc.point.y = yy; | |
} | |
} | |
PolyK._updateISC = function(dx, dy, a1, b1, b2, c, edge, isc) | |
{ | |
var nrl = PolyK._P.dist(a1, c); | |
if(nrl<isc.dist) | |
{ | |
var ibl = 1/PolyK._P.dist(b1, b2); | |
var nx = -(b2.y-b1.y)*ibl; | |
var ny = (b2.x-b1.x)*ibl; | |
var ddot = 2*(dx*nx+dy*ny); | |
isc.dist = nrl; | |
isc.norm.x = nx; | |
isc.norm.y = ny; | |
isc.refl.x = -ddot*nx+dx; | |
isc.refl.y = -ddot*ny+dy; | |
isc.edge = edge; | |
} | |
} | |
PolyK._getPoints = function(ps, ind0, ind1) | |
{ | |
var n = ps.length; | |
var nps = []; | |
if(ind1<ind0) ind1 += n; | |
for(var i=ind0; i<= ind1; i++) nps.push(ps[i%n]); | |
return nps; | |
} | |
PolyK._firstWithFlag = function(ps, ind) | |
{ | |
var n = ps.length; | |
while(true) | |
{ | |
ind = (ind+1)%n; | |
if(ps[ind].flag) return ind; | |
} | |
} | |
PolyK._PointInTriangle = function(px, py, ax, ay, bx, by, cx, cy) | |
{ | |
var v0x = cx-ax; | |
var v0y = cy-ay; | |
var v1x = bx-ax; | |
var v1y = by-ay; | |
var v2x = px-ax; | |
var v2y = py-ay; | |
var dot00 = v0x*v0x+v0y*v0y; | |
var dot01 = v0x*v1x+v0y*v1y; | |
var dot02 = v0x*v2x+v0y*v2y; | |
var dot11 = v1x*v1x+v1y*v1y; | |
var dot12 = v1x*v2x+v1y*v2y; | |
var invDenom = 1 / (dot00 * dot11 - dot01 * dot01); | |
var u = (dot11 * dot02 - dot01 * dot12) * invDenom; | |
var v = (dot00 * dot12 - dot01 * dot02) * invDenom; | |
// Check if point is in triangle | |
return (u >= 0) && (v >= 0) && (u + v < 1); | |
} | |
PolyK._RayLineIntersection = function(a1, a2, b1, b2, c) | |
{ | |
var dax = (a1.x-a2.x), dbx = (b1.x-b2.x); | |
var day = (a1.y-a2.y), dby = (b1.y-b2.y); | |
var Den = dax*dby - day*dbx; | |
if (Den == 0) return null; // parallel | |
var A = (a1.x * a2.y - a1.y * a2.x); | |
var B = (b1.x * b2.y - b1.y * b2.x); | |
var I = c; | |
var iDen = 1/Den; | |
I.x = ( A*dbx - dax*B ) * iDen; | |
I.y = ( A*dby - day*B ) * iDen; | |
if(!PolyK._InRect(I, b1, b2)) return null; | |
if((day>0 && I.y>a1.y) || (day<0 && I.y<a1.y)) return null; | |
if((dax>0 && I.x>a1.x) || (dax<0 && I.x<a1.x)) return null; | |
return I; | |
} | |
PolyK._GetLineIntersection = function(a1, a2, b1, b2, c) | |
{ | |
var dax = (a1.x-a2.x), dbx = (b1.x-b2.x); | |
var day = (a1.y-a2.y), dby = (b1.y-b2.y); | |
var Den = dax*dby - day*dbx; | |
if (Den == 0) return null; // parallel | |
var A = (a1.x * a2.y - a1.y * a2.x); | |
var B = (b1.x * b2.y - b1.y * b2.x); | |
var I = c; | |
I.x = ( A*dbx - dax*B ) / Den; | |
I.y = ( A*dby - day*B ) / Den; | |
if(PolyK._InRect(I, a1, a2) && PolyK._InRect(I, b1, b2)) return I; | |
return null; | |
} | |
PolyK._InRect = function(a, b, c) // a in rect (b,c) | |
{ | |
var minx = Math.min(b.x,c.x), maxx = Math.max(b.x,c.x); | |
var miny = Math.min(b.y,c.y), maxy = Math.max(b.y,c.y); | |
if (minx == maxx) return (miny<=a.y && a.y<=maxy); | |
if (miny == maxy) return (minx<=a.x && a.x<=maxx); | |
//return (minx <= a.x && a.x <= maxx && miny <= a.y && a.y <= maxy) | |
return (minx <= a.x+1e-10 && a.x-1e-10 <= maxx && miny <= a.y+1e-10 && a.y-1e-10 <= maxy) ; | |
} | |
PolyK._convex = function(ax, ay, bx, by, cx, cy) | |
{ | |
return (ay-by)*(cx-bx) + (bx-ax)*(cy-by) >= 0; | |
} | |
PolyK._P = function(x,y) | |
{ | |
this.x = x; | |
this.y = y; | |
this.flag = false; | |
} | |
PolyK._P.prototype.toString = function() | |
{ | |
return "Point ["+this.x+", "+this.y+"]"; | |
} | |
PolyK._P.dist = function(a,b) | |
{ | |
var dx = b.x-a.x; | |
var dy = b.y-a.y; | |
return Math.sqrt(dx*dx + dy*dy); | |
} | |
PolyK._tp = []; | |
for(var i=0; i<10; i++) PolyK._tp.push(new PolyK._P(0,0)); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var Sampler = function() {} | |
Sampler.getSamples = function(path, num) { | |
var len = path.getTotalLength() | |
var p, t; | |
var result = [] | |
for(var i = 0; i < num; i++) { | |
p = path.getPointAtLength(i * len/num); | |
t = Sampler.getTangent(path, i/num * 100); | |
result.push({ | |
x: p.x, | |
y: p.y, | |
point: p, | |
tangent: t, | |
perp: Sampler.rotate2d(t.v, 90) | |
}); | |
} | |
return result | |
} | |
Sampler.getTangent = function(path, percent) { | |
// returns a normalized vector that describes the tangent | |
// at the point that is found at *percent* of the path's length | |
var fraction = percent/100; | |
if(fraction < 0) fraction = 0; | |
if(fraction > 0.99) fraction = 1; | |
var len = path.getTotalLength(); | |
var point1 = path.getPointAtLength(fraction * len - 0.1); | |
var point2 = path.getPointAtLength(fraction * len + 0.1); | |
var vector = { x: point2.x - point1.x, y: point2.y - point1.y } | |
var magnitude = Math.sqrt(vector.x*vector.x + vector.y*vector.y); | |
vector.x /= magnitude; | |
vector.y /= magnitude; | |
return {p: point1, v: vector }; | |
} | |
Sampler.rotate2d = function(vector, angle) { | |
//rotate a vector | |
angle *= Math.PI/180; //convert to radians | |
return { | |
x: vector.x * Math.cos(angle) - vector.y * Math.sin(angle), | |
y: vector.x * Math.sin(angle) + vector.y * Math.cos(angle) | |
} | |
} | |
// we average the location of all the array's points to get the center | |
function centroid(samples) { | |
var avg = {x:0, y:0}; | |
for(var i = 0; i < samples.length; i++) { | |
avg.x += samples[i].x; | |
avg.y += samples[i].y; | |
} | |
avg.x /= samples.length; | |
avg.y /= samples.length; | |
return avg; | |
} | |
// The PolyK library expects a flat array like [x,y,x,y...] | |
function toPolyK(samples) { | |
var poly = [] | |
for(var i = 0; i < samples.length; i++) { | |
poly.push(samples[i].x); | |
poly.push(samples[i].y); | |
} | |
return poly; | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment