Skip to content

Instantly share code, notes, and snippets.

@banacorn
Last active August 19, 2020 02:44
Intrinsically-typed de Bruijn representation of simply typed lambda calculus
============================================================================
\begin{code}
open import Data.Nat
open import Data.Empty
hiding (⊥-elim)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
hiding ([_])
\end{code}
Fixity declartion
-----------------
\begin{code}
infix 3 _⊢_ _=β_
infixr 7 _→̇_
infixr 5 ƛ_
infixl 7 _·_
infixl 8 _[_] _⟪_⟫
infixr 9 ᵒ_ `_ #_
\end{code}
Types
-----
We only deal with function types and a ground type ⋆.
\begin{code}
data Type : Set where
⋆ : Type
_→̇_ : Type → Type → Type
\end{code}
Context
-------
\begin{code}
infixl 7 _⧺_
infixl 6 _,_
infix 4 _∋_
data Context : Set where
∅ : Context
_,_ : Context → Type → Context
\end{code}
For convenience, we use symbols
* `A`, `B`, `C` for types
* `Γ`, `Δ`, and `Ξ` for contexts
In Agda this convention can be achieved by the keyword `variable` as follows.
\begin{code}
variable
Γ Δ Ξ : Context
A B C : Type
\end{code}
Membership
----------
`Γ ∋ A` means that A is a member of Γ.
There are two ways of estabilishing the judgement Γ ∋ A.
1. `Γ , A ∋ A` for any `Γ` and `A`, as we know that `A` is in the
0-th position.
2. If `x : Γ ∋ A` is a proof that `A` is in `Γ`, then `Γ , B ∋ A`
holds.
How should we name these inference rules? Note that if we interpret
the proof of `Γ ∋ A` as the position of `A` in `Γ`, then 1. should be
Z (for zero) and 2. should be S (for successor).
\begin{code}
data _∋_ : Context → Type → Set where
Z ---------
: Γ , A ∋ A
S_ : Γ ∋ A
---------
→ Γ , B ∋ A
variable
x : Γ ∋ A
\end{code}
For example, `S Z : ∅ , A , B ∋ A` means `A` is in the first position. That is,
\begin{code}
_ : ∅ , A , B ∋ A
_ = S Z
\end{code}
Lookup is just `_‼_` in Haskell. Agda is a total language, but
`lookup` can only be partial with this type. We work around this
problem by postulating `⊥`, as we only use `lookup` for examples.
\begin{code}
⊥-elim : ∀ {T : Set} → ⊥ → T
⊥-elim ()
lookup : Context → ℕ → Type
lookup (Γ , A) zero = A
lookup (Γ , B) (suc n) = lookup Γ n
lookup ∅ _ = ⊥-elim impossible
where postulate impossible : ⊥
\end{code}
If `lookup Γ n` finds the element in the n-th position, then the
memberhsip proof can be produced algorithmatically. Hence we can
transform a natural number to a membership proof.
\begin{code}
count : (n : ℕ) → Γ ∋ lookup Γ n
count {Γ = Γ , _} zero = Z
count {Γ = Γ , _} (suc n) = S (count n)
count {Γ = ∅ } _ = ⊥-elim impossible
where postulate impossible : ⊥
\end{code}
### Examples
\begin{code}
_ : ∅ , A , B ∋ A
_ = count 1
_ : ∅ , B , A ∋ A
_ = count 0
\end{code}
Shifting
--------
(Aₙ , ... , A₁, A₀)
| | | |
↓ ↓ ↓ ↓
↦ (Aₙ , ... , A₁, A₀, B)
n+1 2 1 0
\begin{code}
ext
: (∀ {A} → Γ ∋ A → Δ ∋ A)
---------------------------------
→ (∀ {A B} → Γ , B ∋ A → Δ , B ∋ A)
ext ρ Z = Z
ext ρ (S x) = S (ρ x)
\end{code}
Concatenation
-------------
\begin{code}
_⧺_ : Context → Context → Context
Γ ⧺ ∅ = Γ
Γ ⧺ (Δ , x) = Γ ⧺ Δ , x
\end{code}
Terms = typing rules
--------------------
First off, since the typing rules for simply typed lambda calculus are
syntax-directed, we combine the term formation rules with the typing
rules.
Therefore, the typing judgement consists of only a context `Γ` and a
`Type` with inference rules as term constructs. The collection of
terms in simply typed lambda calculus is defined as an inducitve family
indexed by a (given) context and a type.
\begin{code}
data _⊢_ (Γ : Context) : Type → Set where
\end{code}
In our formal development we will use the position of λ to which the
bound variable refer for the name of a variable. For example,
λ x. λ y. y
will be represented by
λ λ 0
This representation is called de Bruijn representation and the nubmer
is a de Bruijn index. It also makes α-equivalence an equality on
λ-terms.
Note that we have
Γ ∋ (x : A)
-----------
Γ ⊢ x : A
in our informal development where `x` is now merely a number pointing
to the position of `A` in `Γ`. We introduce a term `x` for a free
variable in `Γ` just by giving its position in the context.
Given `Γ ⊢ M : A`, the context Γ is the set of possibly free variables in `M`.
\begin{code}
`_ : Γ ∋ A
-----
→ Γ ⊢ A
\end{code}
The definition of application is straightforward.
\begin{code}
_·_ : Γ ⊢ A →̇ B
→ Γ ⊢ A
-----
→ Γ ⊢ B
\end{code}
In the informal development it takes a variable x and a term M to
form λ x. M. Since the name of a variable does not matter at all in
our formal development λ now takes a term M only.
Moreover, the position of a variable in the context `Γ , A` now refers
to the innermost λ. Hence our definition
\begin{code}
ƛ_
: Γ , A ⊢ B
---------
→ Γ ⊢ A →̇ B
\end{code}
For example, ` Z : (∅ , A) ⊢ A is a variable of type A under the
context (∅ , A). After abstraction, ƛ ` Z : ∅ ⊢ A →̇ A is an
abstraction under the empty context whose body is only a variable
refering to the variable bound by λ.
As you may have observed, this inductive family Γ ⊢ A is just
a variant of the natural deduction for propositional logic where
inference rules are viewed as term constructs.
For convenience, the following symbols denote a term.
\begin{code}
variable
M N L M′ N′ L′ : Γ ⊢ A
\end{code}
Also for convenience, we compute the proof of `Γ ∋ A` by giving its
position n (as a natural). In short, define # n as ` (count n)
\begin{code}
#_ : (n : ℕ) → Γ ⊢ lookup Γ n
# n = ` count n
\end{code}
### Examples
\begin{code}
nat : Type → Type
nat A = (A →̇ A) →̇ A →̇ A
\end{code}
Recall that the Church numberal c₀ for 0 is
λ f x. x
In the de Bruijn representation, λ f x. x becomes
λ λ 0
\begin{code}
c₀ : ∀ {A} → ∅ ⊢ nat A
c₀ = ƛ ƛ # 0
\end{code}
Similarly, c₁ ≡ λ f x. f x becomes
λ λ 1 0
\begin{code}
c₁ : ∀ {A} → ∅ ⊢ nat A
c₁ = ƛ ƛ # 1 · # 0
\end{code}
The addition of two Church numerals defined as
λ n. λ m. λ f. λ x. n f (m f x)
becomes
λ λ λ λ 3 1 (2 1 0)
\begin{code}
add : ∀ {A} → ∅ ⊢ nat A →̇ nat A →̇ nat A
add = ƛ ƛ ƛ ƛ # 3 · # 1 · (# 2 · # 1 · # 0)
\end{code}
### Exercise
Translate the following terms in the informal development to de
Bruijn representation.
1. (id) λ x. x
2. (fst) λ x y. x
3. (if) λ b x y. b x y
4. (succ) λ n. λ f x. f (n f x)
\begin{code}
id : ∅ ⊢ A →̇ A
id = ƛ ` Z
fst : ∅ ⊢ A →̇ B →̇ A
fst = ƛ ƛ ` (S Z)
bool : Type → Type
bool A = A →̇ A →̇ A
if : ∅ ⊢ bool A →̇ A →̇ A →̇ A
if = ƛ ` Z
succ : ∅ ⊢ nat A →̇ nat A
succ = ƛ ƛ ƛ ` (S Z) · ((`(S (S Z)) · ` (S Z)) · ` Z)
\end{code}
Parallel Substitution
---------------------
To define substitution, it is actually easier to define substitution
for all free variable at once instead of one.
\begin{code}
Rename : Context → Context → Set
Rename Γ Δ = ∀ {A} → Γ ∋ A → Δ ∋ A
Subst : Context → Context → Set
Subst Γ Δ = ∀ {A} → Γ ∋ A → Δ ⊢ A
\end{code}
As the de Bruijn index points to the position of a λ abstraction
starting from the innermost λ, we need to increment/decrement the
number when visiting/leaving λ.
For example, substituting M for x in the following term
x : A → A ⊢ x (λ y. y)
becomes
0 (λ 0) [ M / 0 ] ≡ M (λ [ M ↑ / 1 ])
where M ↑ indicates that the de Bruijn index of a free variable which
is incremented.
Therefore, a renaming function ρ : ∀ {A} → Γ ∋ A → Δ ∋ A
becomes ext ρ : ∀ {A B} → Γ , B ∋ A → Δ , B ∋ A where B is the type of
argument when visiting an abstraction λ.
\begin{code}
rename : Rename Γ Δ
→ (Γ ⊢ A)
→ (Δ ⊢ A)
rename ρ (` x) = ` ρ x
rename ρ (M · N) = rename ρ M · rename ρ N
rename ρ (ƛ M) = ƛ rename (ext ρ) M
\end{code}
Similarly, we proceed with a substitution σ : ∀ {A} → Γ ∋ A → Δ ⊢ A.
Note that
rename S_ : ∀ {A} → Γ ∋ A → Γ , B ∋ A
merely enlarges the context and increments the de Bruijn index for
every Γ ∋ A.
\begin{code}
exts : Subst Γ Δ → Subst (Γ , A) (Δ , A)
exts σ Z = ` Z
exts σ (S p) = rename S_ (σ p)
_⟪_⟫
: Γ ⊢ A
→ Subst Γ Δ
→ Δ ⊢ A
(` x) ⟪ σ ⟫ = σ x
(M · N) ⟪ σ ⟫ = M ⟪ σ ⟫ · N ⟪ σ ⟫
(ƛ M) ⟪ σ ⟫ = ƛ M ⟪ exts σ ⟫
\end{code}
Singleton Substitution
----------------------
Note that we only need to substitute the free variable corresponding
to the outermost λ, i.e.
(λ x. M) N -→ M [ N / x ]
where the free occurrence of x in M points to the outermost λ.
Thus it suffices to define singleton subsitution for the non-empty
context
Γ , x : A
which appears in the typing rule
Γ , x : A ⊢ M : B
----------------------
Γ ⊢ λ x : A. M : A → B
It follows that the singleton substitution is a special case
of parallel substitution given by
σN : ∀ {A} → Γ , B ∋ A → Γ ⊢ A
for some `N : Γ ⊢ B` so that `_⟪ σN ⟫ : Γ , B ⊢ A → Γ ⊢ A`.
\begin{code}
subst-zero : {B : Type}
→ Γ ⊢ B
→ Subst (Γ , B) Γ
subst-zero N Z = N
subst-zero _ (S x) = ` x
_[_] : Γ , B ⊢ A
→ Γ ⊢ B
---------
→ Γ ⊢ A
_[_] N M = N ⟪ subst-zero M ⟫
\end{code}
Single-step reduction
---------------------
In our informal development -→β is defined only for beta-redex
followed by one-step full β-reduction. These two rules can be combined
altogether.
\begin{code}
infix 3 _-→_
data _-→_ {Γ} : (M N : Γ ⊢ A) → Set where
β-ƛ·
: (ƛ M) · N -→ M [ N ]
ξ-ƛ
: M -→ M′
→ ƛ M -→ ƛ M′
ξ-·ₗ
: L -→ L′
---------------
→ L · M -→ L′ · M
ξ-·ᵣ
: M -→ M′
---------------
→ L · M -→ L · M′
\end{code}
Reduction sequence of -→
--------------------------------------
The reduction sequence M -↠ N from M to N is just a list of reductions
such that the RHS of a head reduction must be the LHS of the tail of
reductions.
\begin{code}
data _-↠_ {Γ A} : (M N : Γ ⊢ A) → Set where
_∎ : (M : Γ ⊢ A)
→ M -↠ M -- empty list
_-→⟨_⟩_
: ∀ L -- this can usually be inferred by the following reduction
→ L -→ M -- the head of a list
→ M -↠ N -- the tail
-------
→ L -↠ N
infix 2 _-↠_
infixr 2 _-→⟨_⟩_
infix 3 _∎
\end{code}
The relation -↠ is also transitive in the sense that
if L -↠ M and M -↠ N then L -↠ N
the proof itself is in fact the concatenation of two lists.
\begin{code}
_-↠⟨_⟩_ : ∀ L
→ L -↠ M → M -↠ N
-----------------
→ L -↠ N
M -↠⟨ L-↠M ⟩ M-↠N = {!!}
infixr 2 _-↠⟨_⟩_
\end{code}
### Exercise
Show that -↠ is a congruence. That is, show the following lemmas.
\begin{code}
ƛ-↠ : M -↠ M′
-----------
→ ƛ M -↠ ƛ M′
ƛ-↠ M-↠M′ = {!!}
·-↠ : M -↠ M′
→ N -↠ N′
→ M · N -↠ M′ · N′
·-↠ M-↠M′ N-↠N′ = {!!}
\end{code}
Computational equality
----------------------
In (untyped) lambda calculus, we say that two terms M and N are
computationally equal denoted by M =β N if either
1. M -→ N
2. M =β M
3. M =β N
------
N =β M
4. L =β M M =β N
----------------
L =β N
Correspondingly, we introduce an inductive type family
where each case is a constrctor of that type family:
\begin{code}
data _=β_ {Γ : Context} : Γ ⊢ A → Γ ⊢ A → Set where
=β-beta
: M -→ N → M =β N
=β-refl
: M =β M
=β-sym
: N =β M → M =β N
=β-trans
: L =β M → M =β N
→ L =β N
\end{code}
Homework Solution in Agda
-------------------------
Show that if M -↠ N and M is in normal form then M ≡ N (every two
α-equivalent terms are exactly equal in de Bruijn representation).
\end{code}
HW2 : M -↠ N → (∀ N → ¬ (M -→ N)) → M ≡ N
HW2 M-↠N M↛ = {!!}
\end{code}
Normal form
-----------
Recall that a term M is in normal form if M --̸→ N for any N. This
property can be characterised completely by its syntax. The
characterisation is given as follows:
λ x₁ x₂ ⋯ xₙ. x N₁ N₂ ⋯ ⋯ ⋯ Nₘ
│ ╰── Neutral ──╯│
╰────────── Normal ──────────╯
where x is a (free or bound) variable, Nᵢ's are all in normal form,
and n and m can be zero. The syntax is devided into two categories:
* neutral terms: the neutral part indicates a spine of normal terms
starting from a variable
* normal terms: a sequence of abstractions λ followed by neutral
terms
Neutral terms are those normal terms which do not create any further
β-redexs during substitution. This characterisation is defined as two
mutually-defiend inductive families.
\begin{code}
data Neutral : Γ ⊢ A → Set
data Normal : Γ ⊢ A → Set
data Neutral where
`_ : (x : Γ ∋ A)
→ Neutral (` x)
_·_ : Neutral L
→ Normal M
→ Neutral (L · M)
data Normal where
ᵒ_ : Neutral M → Normal M
ƛ_ : Normal M → Normal (ƛ M)
\end{code}
The soundness of characterisation is proved by induction on the
derivation of Normal M (resp. Neutral M) and if necessary on M -→ M.
The completeness is proved by induction on the derivation of M
(or Γ ⊢ M : A) and by contradiction using ⊥-elim : ⊥ → A. so that we
can deduce any property we need once we derive a contradication ⊥.
Proofs are left as exercises.
### Exercise
\begin{code}
normal-soundness : Normal M → ¬ (M -→ N)
neutral-soundness : Neutral M → ¬ (M -→ M′)
normal-soundness M = {!!}
neutral-soundness M = {!!}
normal-completeness
: (M : Γ ⊢ A) → (∀ N → ¬ (M -→ N))
→ Normal M
normal-completeness M = {!!}
\end{code}
Preservation
------------
Preservation theorem is trivial in this formal development, since
M -→ N
is an inductive family indexed by two terms of the same type.
Progress
--------
Progress theorem state that every well-typed term M is either
1. in normal form or
2. reducible
so we introduce a predicate `Progress` over well-typed terms M for
this statement.
\begin{code}
data Progress (M : Γ ⊢ A) : Set where
step
: M -→ N
----------
→ Progress M
done : Normal M
→ Progress M
\end{code}
Progress theorm is proved by induction on the derviation of Γ ⊢ M : A
in the informal and formal developments.
\begin{code}
progress : (M : Γ ⊢ A)
→ Progress M
progress M = {!!}
\end{code}
Progress Theorem can be proved without `Normal`. Then, why bother?
Despite of being logically equivalent, the proof becomes really ugly!
Try the following exericse at your own risk.
\begin{code}
data Progress′ (M : Γ ⊢ A) : Set where
step
: (r : M -→ N)
----------
→ Progress′ M
done : (M↓ : (N : Γ ⊢ A) → M -→ N → ⊥)
→ Progress′ M
progress′ : (M : Γ ⊢ A) → Progress′ M
progress′ M = {!!}
\end{code}
module STLC where
open import Data.Nat
open import Data.Empty
hiding (⊥-elim)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
hiding ([_])
infix 3 _⊢_ _=β_
infixr 7 _→̇_
infixr 5 ƛ_
infixl 7 _·_
infixl 8 _[_] _⟪_⟫
infixr 9 ᵒ_ `_ #_
data Type : Set where
⋆ : Type
_→̇_ : Type → Type → Type
infixl 7 _⧺_
infixl 6 _,_
infix 4 _∋_
data Context : Set where
∅ : Context
_,_ : Context → Type → Context
variable
Γ Δ Ξ : Context
A B C : Type
data _∋_ : Context → Type → Set where
Z ---------
: Γ , A ∋ A
S_ : Γ ∋ A
---------
→ Γ , B ∋ A
variable
x : Γ ∋ A
_ : ∅ , A , B ∋ A
_ = S Z
⊥-elim : ∀ {T : Set} → ⊥ → T
⊥-elim ()
lookup : Context → ℕ → Type
lookup (Γ , A) zero = A
lookup (Γ , B) (suc n) = lookup Γ n
lookup ∅ _ = ⊥-elim impossible
where postulate impossible : ⊥
count : (n : ℕ) → Γ ∋ lookup Γ n
count {Γ = Γ , _} zero = Z
count {Γ = Γ , _} (suc n) = S (count n)
count {Γ = ∅ } _ = ⊥-elim impossible
where postulate impossible : ⊥
_ : ∅ , A , B ∋ A
_ = count 1
_ : ∅ , B , A ∋ A
_ = count 0
ext
: (∀ {A} → Γ ∋ A → Δ ∋ A)
---------------------------------
→ (∀ {A B} → Γ , B ∋ A → Δ , B ∋ A)
ext ρ Z = Z
ext ρ (S x) = S (ρ x)
_⧺_ : Context → Context → Context
Γ ⧺ ∅ = Γ
Γ ⧺ (Δ , x) = Γ ⧺ Δ , x
data _⊢_ (Γ : Context) : Type → Set where
`_ : Γ ∋ A
-----
→ Γ ⊢ A
_·_ : Γ ⊢ A →̇ B
→ Γ ⊢ A
-----
→ Γ ⊢ B
ƛ_
: Γ , A ⊢ B
---------
→ Γ ⊢ A →̇ B
variable
M N L M′ N′ L′ : Γ ⊢ A
#_ : (n : ℕ) → Γ ⊢ lookup Γ n
# n = ` count n
nat : Type → Type
nat A = (A →̇ A) →̇ A →̇ A
c₀ : ∀ {A} → ∅ ⊢ nat A
c₀ = ƛ ƛ # 0
c₁ : ∀ {A} → ∅ ⊢ nat A
c₁ = ƛ ƛ # 1 · # 0
add : ∀ {A} → ∅ ⊢ nat A →̇ nat A →̇ nat A
add = ƛ ƛ ƛ ƛ # 3 · # 1 · (# 2 · # 1 · # 0)
id : ∅ ⊢ A →̇ A
id = ƛ ` Z
fst : ∅ ⊢ A →̇ B →̇ A
fst = ƛ ƛ ` (S Z)
bool : Type → Type
bool A = A →̇ A →̇ A
if : ∅ ⊢ bool A →̇ A →̇ A →̇ A
if = ƛ ` Z
succ : ∅ ⊢ nat A →̇ nat A
succ = ƛ ` Z
Rename : Context → Context → Set
Rename Γ Δ = ∀ {A} → Γ ∋ A → Δ ∋ A
Subst : Context → Context → Set
Subst Γ Δ = ∀ {A} → Γ ∋ A → Δ ⊢ A
rename : Rename Γ Δ
→ (Γ ⊢ A)
→ (Δ ⊢ A)
rename ρ (` x) = ` ρ x
rename ρ (M · N) = rename ρ M · rename ρ N
rename ρ (ƛ M) = ƛ rename (ext ρ) M
exts : Subst Γ Δ → Subst (Γ , A) (Δ , A)
exts σ Z = ` Z
exts σ (S p) = rename S_ (σ p)
_⟪_⟫
: Γ ⊢ A
→ Subst Γ Δ
→ Δ ⊢ A
(` x) ⟪ σ ⟫ = σ x
(M · N) ⟪ σ ⟫ = M ⟪ σ ⟫ · N ⟪ σ ⟫
(ƛ M) ⟪ σ ⟫ = ƛ M ⟪ exts σ ⟫
subst-zero : {B : Type}
→ Γ ⊢ B
→ Subst (Γ , B) Γ
subst-zero N Z = N
subst-zero _ (S x) = ` x
_[_] : Γ , B ⊢ A
→ Γ ⊢ B
---------
→ Γ ⊢ A
_[_] N M = N ⟪ subst-zero M ⟫
infix 3 _-→_
data _-→_ {Γ} : (M N : Γ ⊢ A) → Set where
β-ƛ·
: (ƛ M) · N -→ M [ N ]
ξ-ƛ
: M -→ M′
→ ƛ M -→ ƛ M′
ξ-·ₗ
: L -→ L′
---------------
→ L · M -→ L′ · M
ξ-·ᵣ
: M -→ M′
---------------
→ L · M -→ L · M′
data _-↠_ {Γ A} : (M N : Γ ⊢ A) → Set where
_∎ : (M : Γ ⊢ A)
→ M -↠ M -- empty list
_-→⟨_⟩_
: ∀ L -- this can usually be inferred by the following reduction
→ L -→ M -- the head of a list
→ M -↠ N -- the tail
-------
→ L -↠ N
infix 2 _-↠_
infixr 2 _-→⟨_⟩_
infix 3 _∎
_-↠⟨_⟩_ : ∀ L
→ L -↠ M → M -↠ N
-----------------
→ L -↠ N
M -↠⟨ L-↠M ⟩ M-↠N = {!!}
infixr 2 _-↠⟨_⟩_
ƛ-↠ : M -↠ M′
-----------
→ ƛ M -↠ ƛ M′
ƛ-↠ M-↠M′ = {!!}
·-↠ : M -↠ M′
→ N -↠ N′
→ M · N -↠ M′ · N′
·-↠ M-↠M′ N-↠N′ = {!!}
data _=β_ {Γ : Context} : Γ ⊢ A → Γ ⊢ A → Set where
=β-beta
: M -→ N → M =β N
=β-refl
: M =β M
=β-sym
: N =β M → M =β N
=β-trans
: L =β M → M =β N
→ L =β N
data Neutral : Γ ⊢ A → Set
data Normal : Γ ⊢ A → Set
data Neutral where
`_ : (x : Γ ∋ A)
→ Neutral (` x)
_·_ : Neutral L
→ Normal M
→ Neutral (L · M)
data Normal where
ᵒ_ : Neutral M → Normal M
ƛ_ : Normal M → Normal (ƛ M)
normal-soundness : Normal M → ¬ (M -→ N)
neutral-soundness : Neutral M → ¬ (M -→ M′)
normal-soundness M = {!!}
neutral-soundness M = {!!}
normal-completeness
: (M : Γ ⊢ A) → (∀ N → ¬ (M -→ N))
→ Normal M
normal-completeness M = {!!}
data Progress (M : Γ ⊢ A) : Set where
step
: M -→ N
----------
→ Progress M
done : Normal M
→ Progress M
progress : (M : Γ ⊢ A)
→ Progress M
progress M = {!!}
data Progress′ (M : Γ ⊢ A) : Set where
step
: (r : M -→ N)
----------
→ Progress′ M
done : (M↓ : (N : Γ ⊢ A) → M -→ N → ⊥)
→ Progress′ M
progress′ : (M : Γ ⊢ A) → Progress′ M
progress′ M = {!!}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment