Skip to content

Instantly share code, notes, and snippets.

@bathtimefish
Last active March 5, 2017 11:58
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save bathtimefish/6b555e674c5ac3cd34b2e868b75ee355 to your computer and use it in GitHub Desktop.
Save bathtimefish/6b555e674c5ac3cd34b2e868b75ee355 to your computer and use it in GitHub Desktop.
DQNをKerasとTensorFlowとOpenAI Gymで実装する https://elix-tech.github.io/ja/2016/06/29/dqn-ja.html のプログラムをPython3.5 & TensorFlow 1.0で動くように修正したやつ
# coding:utf-8
import os
import gym
import random
import numpy as np
import tensorflow as tf
from collections import deque
from skimage.color import rgb2gray
from skimage.transform import resize
from keras.models import Sequential
from keras.layers import Convolution2D, Flatten, Dense
KERAS_BACKEND = 'tensorflow'
ENV_NAME = 'Breakout-v0' # Environment name
FRAME_WIDTH = 84 # Resized frame width
FRAME_HEIGHT = 84 # Resized frame height
NUM_EPISODES = 12000 # Number of episodes the agent plays
STATE_LENGTH = 4 # Number of most recent frames to produce the input to the network
GAMMA = 0.99 # Discount factor
EXPLORATION_STEPS = 1000000 # Number of steps over which the initial value of epsilon is linearly annealed to its final value
INITIAL_EPSILON = 1.0 # Initial value of epsilon in epsilon-greedy
FINAL_EPSILON = 0.1 # Final value of epsilon in epsilon-greedy
INITIAL_REPLAY_SIZE = 20000 # Number of steps to populate the replay memory before training starts
NUM_REPLAY_MEMORY = 400000 # Number of replay memory the agent uses for training
BATCH_SIZE = 32 # Mini batch size
TARGET_UPDATE_INTERVAL = 10000 # The frequency with which the target network is updated
ACTION_INTERVAL = 4 # The agent sees only every 4th input
TRAIN_INTERVAL = 4 # The agent selects 4 actions between successive updates
LEARNING_RATE = 0.00025 # Learning rate used by RMSProp
MOMENTUM = 0.95 # Momentum used by RMSProp
MIN_GRAD = 0.01 # Constant added to the squared gradient in the denominator of the RMSProp update
SAVE_INTERVAL = 300000 # The frequency with which the network is saved
NO_OP_STEPS = 30 # Maximum number of "do nothing" actions to be performed by the agent at the start of an episode
LOAD_NETWORK = False
TRAIN = True
SAVE_NETWORK_PATH = 'saved_networks/' + ENV_NAME
SAVE_SUMMARY_PATH = 'summary/' + ENV_NAME
NUM_EPISODES_AT_TEST = 30 # Number of episodes the agent plays at test time
class Agent():
def __init__(self, num_actions):
self.num_actions = num_actions
self.epsilon = INITIAL_EPSILON
self.epsilon_step = (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORATION_STEPS
self.t = 0
self.repeated_action = 0
# Parameters used for summary
self.total_reward = 0
self.total_q_max = 0
self.total_loss = 0
self.duration = 0
self.episode = 0
# Create replay memory
self.replay_memory = deque()
# Create q network
self.s, self.q_values, q_network = self.build_network()
q_network_weights = q_network.trainable_weights
# Create target network
self.st, self.target_q_values, target_network = self.build_network()
target_network_weights = target_network.trainable_weights
# Define target network update operation
self.update_target_network = [target_network_weights[i].assign(q_network_weights[i]) for i in range(len(target_network_weights))]
# Define loss and gradient update operation
self.a, self.y, self.loss, self.grad_update = self.build_training_op(q_network_weights)
self.sess = tf.InteractiveSession()
self.saver = tf.train.Saver(q_network_weights)
self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()
self.summary_writer = tf.summary.FileWriter(SAVE_SUMMARY_PATH, self.sess.graph)
if not os.path.exists(SAVE_NETWORK_PATH):
os.makedirs(SAVE_NETWORK_PATH)
self.sess.run(tf.global_variables_initializer())
# Load network
if LOAD_NETWORK:
self.load_network()
# Initialize target network
self.sess.run(self.update_target_network)
def build_network(self):
model = Sequential()
model.add(Convolution2D(32, 8, 8, subsample=(4, 4), activation='relu', input_shape=(STATE_LENGTH, FRAME_WIDTH, FRAME_HEIGHT)))
model.add(Convolution2D(64, 4, 4, subsample=(2, 2), activation='relu'))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), activation='relu'))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(self.num_actions))
s = tf.placeholder(tf.float32, [None, STATE_LENGTH, FRAME_WIDTH, FRAME_HEIGHT])
q_values = model(s)
return s, q_values, model
def build_training_op(self, q_network_weights):
a = tf.placeholder(tf.int64, [None])
y = tf.placeholder(tf.float32, [None])
# Convert action to one hot vector
a_one_hot = tf.one_hot(a, self.num_actions, 1.0, 0.0)
q_value = tf.reduce_sum(tf.multiply(self.q_values, a_one_hot), reduction_indices=1)
# Clip the error, the loss is quadratic when the error is in (-1, 1), and linear outside of that region
error = tf.abs(y - q_value)
quadratic_part = tf.clip_by_value(error, 0.0, 1.0)
linear_part = error - quadratic_part
loss = tf.reduce_mean(0.5 * tf.square(quadratic_part) + linear_part)
optimizer = tf.train.RMSPropOptimizer(LEARNING_RATE, momentum=MOMENTUM, epsilon=MIN_GRAD)
grad_update = optimizer.minimize(loss, var_list=q_network_weights)
return a, y, loss, grad_update
def get_initial_state(self, observation, last_observation):
processed_observation = np.maximum(observation, last_observation)
processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255)
state = [processed_observation for _ in range(STATE_LENGTH)]
return np.stack(state, axis=0)
def get_action(self, state):
action = self.repeated_action
if self.t % ACTION_INTERVAL == 0:
if self.epsilon >= random.random() or self.t < INITIAL_REPLAY_SIZE:
action = random.randrange(self.num_actions)
else:
action = np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]}))
self.repeated_action = action
# Anneal epsilon linearly over time
if self.epsilon > FINAL_EPSILON and self.t >= INITIAL_REPLAY_SIZE:
self.epsilon -= self.epsilon_step
return action
def run(self, state, action, reward, terminal, observation):
next_state = np.append(state[1:, :, :], observation, axis=0)
# Clip all positive rewards at 1 and all negative rewards at -1, leaving 0 rewards unchanged
reward = np.sign(reward)
# Store transition in replay memory
self.replay_memory.append((state, action, reward, next_state, terminal))
if len(self.replay_memory) > NUM_REPLAY_MEMORY:
self.replay_memory.popleft()
if self.t >= INITIAL_REPLAY_SIZE:
# Train network
if self.t % TRAIN_INTERVAL == 0:
self.train_network()
# Update target network
if self.t % TARGET_UPDATE_INTERVAL == 0:
self.sess.run(self.update_target_network)
# Save network
if self.t % SAVE_INTERVAL == 0:
save_path = self.saver.save(self.sess, SAVE_NETWORK_PATH + '/' + ENV_NAME, global_step=(self.t))
print('Successfully saved: ' + save_path)
self.total_reward += reward
self.total_q_max += np.max(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]}))
self.duration += 1
if terminal:
# Write summary
if self.t >= INITIAL_REPLAY_SIZE:
stats = [self.total_reward, self.total_q_max / float(self.duration),
self.duration, self.total_loss / (float(self.duration) / float(TRAIN_INTERVAL))]
for i in range(len(stats)):
self.sess.run(self.update_ops[i], feed_dict={
self.summary_placeholders[i]: float(stats[i])
})
summary_str = self.sess.run(self.summary_op)
self.summary_writer.add_summary(summary_str, self.episode + 1)
# Debug
if self.t < INITIAL_REPLAY_SIZE:
mode = 'random'
elif INITIAL_REPLAY_SIZE <= self.t < INITIAL_REPLAY_SIZE + EXPLORATION_STEPS:
mode = 'explore'
else:
mode = 'exploit'
print('EPISODE: {0:6d} / TIMESTEP: {1:8d} / DURATION: {2:5d} / EPSILON: {3:.5f} / TOTAL_REWARD: {4:3.0f} / AVG_MAX_Q: {5:2.4f} / AVG_LOSS: {6:.5f} / MODE: {7}'.format(
self.episode + 1, self.t, self.duration, self.epsilon,
self.total_reward, self.total_q_max / float(self.duration),
self.total_loss / (float(self.duration) / float(TRAIN_INTERVAL)), mode))
self.total_reward = 0
self.total_q_max = 0
self.total_loss = 0
self.duration = 0
self.episode += 1
self.t += 1
return next_state
def train_network(self):
state_batch = []
action_batch = []
reward_batch = []
next_state_batch = []
terminal_batch = []
y_batch = []
# Sample random minibatch of transition from replay memory
minibatch = random.sample(self.replay_memory, BATCH_SIZE)
for data in minibatch:
state_batch.append(data[0])
action_batch.append(data[1])
reward_batch.append(data[2])
next_state_batch.append(data[3])
terminal_batch.append(data[4])
# Convert True to 1, False to 0
terminal_batch = np.array(terminal_batch) + 0
target_q_values_batch = self.target_q_values.eval(feed_dict={self.st: np.float32(np.array(next_state_batch) / 255.0)})
y_batch = reward_batch + (1 - terminal_batch) * GAMMA * np.max(target_q_values_batch, axis=1)
loss, _ = self.sess.run([self.loss, self.grad_update], feed_dict={
self.s: np.float32(np.array(state_batch) / 255.0),
self.a: action_batch,
self.y: y_batch
})
self.total_loss += loss
def setup_summary(self):
episode_total_reward = tf.Variable(0.)
tf.summary.scalar(ENV_NAME + '/Total Reward/Episode', episode_total_reward)
episode_avg_max_q = tf.Variable(0.)
tf.summary.scalar(ENV_NAME + '/Average Max Q/Episode', episode_avg_max_q)
episode_duration = tf.Variable(0.)
tf.summary.scalar(ENV_NAME + '/Duration/Episode', episode_duration)
episode_avg_loss = tf.Variable(0.)
tf.summary.scalar(ENV_NAME + '/Average Loss/Episode', episode_avg_loss)
summary_vars = [episode_total_reward, episode_avg_max_q, episode_duration, episode_avg_loss]
summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
summary_op = tf.summary.merge_all()
return summary_placeholders, update_ops, summary_op
def load_network(self):
checkpoint = tf.train.get_checkpoint_state(SAVE_NETWORK_PATH)
if checkpoint and checkpoint.model_checkpoint_path:
self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
print('Successfully loaded: ' + checkpoint.model_checkpoint_path)
else:
print('Training new network...')
def get_action_at_test(self, state):
action = self.repeated_action
if self.t % ACTION_INTERVAL == 0:
if random.random() <= 0.05:
action = random.randrange(self.num_actions)
else:
action = np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(state / 255.0)]}))
self.repeated_action = action
self.t += 1
return action
def preprocess(observation, last_observation):
processed_observation = np.maximum(observation, last_observation)
processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255)
return np.reshape(processed_observation, (1, FRAME_WIDTH, FRAME_HEIGHT))
def main():
env = gym.make(ENV_NAME)
agent = Agent(num_actions=env.action_space.n)
if TRAIN: # Train mode
for _ in range(NUM_EPISODES):
terminal = False
observation = env.reset()
for _ in range(random.randint(1, NO_OP_STEPS)):
last_observation = observation
observation, _, _, _ = env.step(0) # Do nothing
state = agent.get_initial_state(observation, last_observation)
while not terminal:
last_observation = observation
action = agent.get_action(state)
observation, reward, terminal, _ = env.step(action)
# env.render()
processed_observation = preprocess(observation, last_observation)
state = agent.run(state, action, reward, terminal, processed_observation)
else: # Test mode
# env.monitor.start(ENV_NAME + '-test')
for _ in range(NUM_EPISODES_AT_TEST):
terminal = False
observation = env.reset()
for _ in range(random.randint(1, NO_OP_STEPS)):
last_observation = observation
observation, _, _, _ = env.step(0) # Do nothing
state = agent.get_initial_state(observation, last_observation)
while not terminal:
last_observation = observation
action = agent.get_action_at_test(state)
observation, _, terminal, _ = env.step(action)
env.render()
processed_observation = preprocess(observation, last_observation)
state = np.append(state[1:, :, :], processed_observation, axis=0)
# env.monitor.close()
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment