Last active
March 26, 2024 00:54
-
-
Save bbolker/4ae3496c0ddf99ea2009a22b94aecbe5 to your computer and use it in GitHub Desktop.
tools for using glmulti with lme4/glmmTMB model fits
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lme4) | |
library(glmmTMB) | |
library(glmulti) | |
set.seed(101) | |
## updated 3 March 2024; take random effects as formulas so that e.g. `ar1()` terms work | |
## FIXME: better data so we don't get convergence weirdness etc.? | |
## A random vector of count data | |
vy1 <- round(runif(100, min=1,max=20)*round(runif(100,min=1,max=20))) | |
## Predictors | |
va <- runif(100, min=1, max=100) | |
vb <- runif(100, min=1, max=100) | |
random_effect <- factor(rep(c(1,2,3,4),each=25)) | |
tt <- factor(rep(1:25, 4)) | |
pippo <- data.frame(vy1,va,vb,random_effect, tt) | |
form_glmulti <- vy1~va*vb | |
## The wrapper function for linear mixed-models | |
mm_glmulti <- function(formula, data, random=NULL, FUN = lme4::lmer, | |
extra_args = NULL, ...) { | |
## FIXME: check/throw error if REs not parenthesized? | |
af <- function(x,y) if (is.null(y)) x else glmmTMB::addForm(x,y) | |
ff <- af(formula, random) | |
arglist <- c(list(ff, data = data), list(...), extra_args) | |
do.call(FUN, arglist) | |
} | |
lmer.glmulti <- function(...) mm_glmulti(..., extra_args = list(REML = FALSE)) | |
glmer.glmulti <- function(...) mm_glmulti(..., FUN = lme4::glmer) | |
glmmTMB.glmulti <- function(...) mm_glmulti(..., FUN = glmmTMB::glmmTMB, | |
extra_args = list(REML = FALSE)) | |
## I'm not sure why I set `df` to 10000 but I assume it's just to get Gaussian | |
## confidence intervals (and that `Inf` doesn't work for some reason) | |
setMethod('getfit', 'merMod', | |
function(object, ...) { | |
summ <- coef(summary(object)) | |
summ1 <- summ[, c("Estimate", "Std. Error"), drop = FALSE] | |
## FIXME: update for lmerTest? | |
cbind(summ1, df=rep(10000, length(fixef(object)))) | |
} | |
) | |
setMethod('getfit', 'glmmTMB', | |
function(object, ...) { | |
## only handles conditional | |
## warn if disp, zi detected?? | |
summ <- coef(summary(object))$cond | |
summ1 <- summ[, c("Estimate", "Std. Error"), drop = FALSE] | |
cbind(summ1, df=rep(10000, length(fixef(object)$cond))) | |
} | |
) | |
## sigh, can't collapse this to a single function that passes | |
## fitfunc because of glmulti() eval()/call() stuff | |
## (Error in match.fun(fitfunction) : object 'FUN' not found) | |
glmulti_lmm <- glmulti(form_glmulti, | |
random= ~(1|random_effect), | |
data=pippo, method="h", | |
fitfunc=lmer.glmulti, | |
intercept=TRUE,marginality=FALSE,level=2) | |
glmulti_glmm <- glmulti(form_glmulti, | |
random= ~(1|random_effect), | |
family = poisson, | |
data=pippo, method="h", | |
fitfunc=glmer.glmulti, | |
intercept=TRUE,marginality=FALSE,level=2) | |
glmulti_glmmTMB <- glmulti(form_glmulti, | |
random= ~(1|random_effect), | |
data=pippo, method="h", | |
fitfunc=glmmTMB.glmulti, | |
intercept=TRUE, marginality=FALSE,level=2) | |
glmulti_glmmTMB_nbinom <- glmulti(form_glmulti, | |
random= ~(1|random_effect), | |
family = "nbinom2", | |
data=pippo, method="h", | |
fitfunc=glmmTMB.glmulti, | |
intercept=TRUE, marginality=FALSE,level=2) | |
glmulti_glmmTMB_ar1A <- glmulti(form_glmulti, | |
random=~(ar1(tt-1|random_effect)), | |
data=pippo, method="h", | |
fitfunc=glmmTMB.glmulti, | |
intercept=TRUE, marginality=TRUE,level=2) | |
coef.glmulti(glmulti_lmm, | |
select="all", | |
varweighting="Johnson", | |
icmethod="Burnham") | |
coef.glmulti(glmulti_glmmTMB, | |
select="all", | |
varweighting="Johnson", | |
icmethod="Burnham") | |
coef.glmulti(glmulti_glmmTMB_nbinom, | |
select="all", | |
varweighting="Johnson", | |
icmethod="Burnham") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Yes, I got the same error when using "random = ~(1 | pair.fate$Year)" or "random= ~(1|Year)+(1|PairID)".