osl_calibration
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# data ingest --------------------------------------- | |
grain_1 <- read.csv("CMC1.csv", header = FALSE) | |
grain_2 <- read.csv("CMC2.csv", header = FALSE) | |
grain_3 <- read.csv("CMC3.csv", header = FALSE) | |
grains <- list(grain_1 = grain_1, | |
grain_2 = grain_2, | |
grain_3 = grain_3) | |
dose_rate <- read.csv("dr.csv", header = FALSE)$V1 | |
random_error <- read.csv("drs.csv", header = FALSE)$V1 | |
# data structure for stan model ---------------------- | |
N <- length(grains) # number of grains we are analysing | |
J <- unname(sapply(grains, nrow)) # number of analyses per grain | |
y <- stack(sapply(grains, `[[`, 1))$values # stack of 1st col of each list item | |
sigma <- stack(sapply(grains, `[[`, 2))$values # stack of 2nd col of each list item | |
dr <- dose_rate | |
drs <- random_error | |
# starting values for the parameters ------------------ | |
mu <- unname(sapply(grains, function(i) median(i$V1))) | |
theta <- rnorm(sum(J)) * (0.03 * y) + y | |
theta <- ifelse(theta >= 0.01, theta, 0.01) | |
tau1 <- 0.20 | |
tau2 <- 0.50 | |
lamda <- rnorm(sum(J)) * 0.05 + 0.5 | |
delta <- rnorm(N) * drs + dr | |
# stan... ------------------ | |
library(rstan) | |
rstan_options(auto_write = TRUE) | |
options(mc.cores = parallel::detectCores()) | |
model <- stan_demo() | |
# test to see if my objects are similar to his | |
df <- list(data.frame(mu = mu, | |
al_mu = al_mu), | |
data.frame(theta = theta, | |
al_theta = al_theta), | |
data.frame(lamda = lamda, | |
al_lamda = al_lamda), | |
data.frame(delta = delta, | |
al_delta = al_delta)) | |
library(ggplot2) | |
# theta | |
ggplot(stack(df[[2]]), aes(colour = ind, values)) + | |
geom_density() | |
# lamda | |
ggplot(stack(df[[3]]), aes(colour = ind, values)) + | |
geom_density() | |
# delta | |
ggplot(stack(df[[4]]), aes(colour = ind, values)) + | |
geom_density() | |
# grains | |
grains_df <- do.call(rbind, grains) | |
grains_df$sample <- gsub("\\..*$", "", rownames(grains_df)) | |
ggplot(grains_df, aes(V1, fill = sample)) + | |
geom_histogram() | |
# explore a negative binomial fit... | |
N <- 100 | |
x <- rnbinom(N, 10, .25) | |
hist(x, | |
xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1, | |
col='lightblue', | |
main='Negative binomial distribution, n=10, p=.25') | |
lines(density(x,bw=1), col='red', lwd=3) | |
# load library | |
library(fitdistrplus) | |
# fit the negative binomial distribution | |
samp <- grain_2$V1 | |
fit <- fitdist(samp, "nbinom", method = "mme") | |
# get the fitted densities. mu and size from fit. | |
fitD <- dnbinom(0:(length(samp)*2), size = unname(fit$estimate[1]) , mu = unname(fit$estimate[2])) | |
# add fitted line (blue) to histogram | |
plot(density(samp), col='red', lwd=3) | |
lines(fitD, lwd="3", col="blue") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment