Last active
June 1, 2020 19:22
-
-
Save bessiec/986e971203b4b8ddc56d3d165599f9d0 to your computer and use it in GitHub Desktop.
D3 Venn Diagram Example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!doctype html> | |
<head> | |
<title>Audience Comparison</title> | |
<meta charset="utf-8"> | |
<meta http-equiv="X-UA-Compatible" content="IE=edge"> | |
<meta name="viewport" content="width=device-width, initial-scale=1"> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/d3.min.js" charset="utf-8"></script> | |
<link href='https://fonts.googleapis.com/css?family=Quicksand:400,700' rel='stylesheet' type='text/css'> | |
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css"> | |
<script src="venn.js"></script> | |
<style> | |
body { | |
font-family: 'Quicksand', sans-serif; | |
font-weight: 700; | |
font-size : 14px; | |
margin: 2% 2% 2% 2%; | |
} | |
.venntooltip { | |
font-size : 14px; | |
position: absolute; | |
text-align: center; | |
width: 128px; | |
height: 85px; | |
background: #333; | |
color: #fff; | |
padding: 2px; | |
border: 0px; | |
border-radius: 8px; | |
opacity: 0; | |
} | |
</style> | |
</head> | |
<body> | |
<div id="container"> | |
<h1>Audience Comparison</h1> | |
<p>Venn Diagram created with Ben Federickson's "<a href="http://www.benfrederickson.com/better-venn-diagrams/">A Better Algorithm for Area Proportional Venn and Euler Diagrams</a>"</p> | |
<div id="venn_one" style=float:left> | |
<h3>Audience One</h3> | |
</div> | |
<div id="venn_two" style=float:left> | |
<h3>Audience Two</h3> | |
</div> | |
<script> | |
var sets = [ | |
{sets:["Audio"], figure: 8.91, label: "Audio", size: 8.91}, | |
{sets:["Direct Buy"], figure: 34.53, label: "Direct Buy", size: 34.53}, | |
{sets:["Branded Takeover"], figure: 40.9, label: "Branded Takeover", size: 40.9}, | |
{sets: ["Audio", "Direct Buy"], figure: 5.05, label: "Audio and Direct Buy", size: 5.05}, | |
{sets: ["Audio", "Branded Takeover"], figure: 3.65, label: "Audio and Branded Takeover", size: 3.65}, | |
{sets: ["Direct Buy", "Branded Takeover"], figure: 4.08, label: "Direct Buy and Branded Takeover", size: 4.08}, | |
{sets: ["Audio", "Direct Buy", "Branded Takeover"], figure: 2.8, label: "Audio, Direct Buy, and Branded Takeover", size: 2.8} | |
]; | |
var chart = venn.VennDiagram() | |
.width(500) | |
.height(400) | |
var div = d3.select("#venn_one").datum(sets).call(chart); | |
div.selectAll("text").style("fill", "white"); | |
div.selectAll(".venn-circle path") | |
.style("fill-opacity", .8) | |
.style("stroke-width", 1) | |
.style("stroke-opacity", 1) | |
.style("stroke", "fff"); | |
var tooltip = d3.select("#venn_one").append("div") | |
.attr("class", "venntooltip"); | |
div.selectAll("g") | |
.on("mouseover", function(d, i) { | |
// sort all the areas relative to the current item | |
venn.sortAreas(div, d); | |
// Display a tooltip with the current size | |
tooltip.transition().duration(40).style("opacity", 1); | |
tooltip.text(d.size + "% of Audience One saw " + d.label); | |
// highlight the current path | |
// highlight the current path | |
var selection = d3.select(this).transition("tooltip").duration(400); | |
selection.select("path") | |
.style("stroke-width", 3) | |
.style("fill-opacity", d.sets.length == 1 ? .8 : 0) | |
.style("stroke-opacity", 1); | |
}) | |
.on("mousemove", function() { | |
tooltip.style("left", (d3.event.pageX) + "px") | |
.style("top", (d3.event.pageY - 28) + "px"); | |
}) | |
.on("mouseout", function(d, i) { | |
tooltip.transition().duration(2000).style("opacity", 0); | |
var selection = d3.select(this).transition("tooltip").duration(400); | |
selection.select("path") | |
.style("stroke-width", 3) | |
.style("fill-opacity", d.sets.length == 1 ? .8 : 0) | |
.style("stroke-opacity", 1); | |
}); | |
var sets = [ | |
{sets:["Audio"], figure: 27.92, label: "Audio", size: 27.92}, | |
{sets:["Direct Buy"], figure: 55.28, label: "Direct Buy", size: 55.28}, | |
{sets:["Branded Takeover"], figure: 7.62, label: "Branded Takeover", size: 7.62}, | |
{sets: ["Audio", "Direct Buy"], figure: 3.03, label: "Audio and Direct Buy", size: 3.03}, | |
{sets: ["Audio", "Branded Takeover"], figure: 1.66, label: "Audio and Branded Takeover", size: 1.66}, | |
{sets: ["Direct Buy", "Branded Takeover"], figure: 2.40, label: "Direct Buy and Branded Takeover", size: 2.40}, | |
{sets: ["Audio", "Direct Buy", "Branded Takeover"], figure: 1.08, label: "Audio, Direct Buy, and Branded Takeover", size: 1.08} | |
]; | |
var chart = venn.VennDiagram() | |
.width(500) | |
.height(400) | |
var div2 = d3.select("#venn_two").datum(sets).call(chart); | |
div2.selectAll("text").style("fill", "white"); | |
div2.selectAll(".venn-circle path") | |
.style("fill-opacity", .8) | |
.style("stroke-width", 1) | |
.style("stroke-opacity", 1) | |
.style("stroke", "fff"); | |
var tooltip = d3.select("body").append("div") | |
.attr("class", "venntooltip"); | |
div2.selectAll("g") | |
.on("mouseover", function(d, i) { | |
// sort all the areas relative to the current item | |
venn.sortAreas(div2, d); | |
// Display a tooltip with the current size | |
tooltip.transition().duration(40).style("opacity", 1); | |
tooltip.text(d.size + "% of Audience Two saw " + d.label); | |
// highlight the current path | |
var selection = d3.select(this).transition("tooltip").duration(400); | |
selection.select("path") | |
.style("stroke-width", 3) | |
.style("fill-opacity", d.sets.length == 1 ? .8 : 0) | |
.style("stroke-opacity", 1); | |
}) | |
.on("mousemove", function() { | |
tooltip.style("left", (d3.event.pageX) + "px") | |
.style("top", (d3.event.pageY - 28) + "px"); | |
}) | |
.on("mouseout", function(d, i) { | |
tooltip.transition().duration(2500).style("opacity", 0); | |
var selection = d3.select(this).transition("tooltip").duration(400); | |
selection.select("path") | |
.style("stroke-width", 3) | |
.style("fill-opacity", d.sets.length == 1 ? .8 : 0) | |
.style("stroke-opacity", 1); | |
}); | |
//https://github.com/benfred/venn.js/issues/22 | |
</script> | |
</div> | |
</body> | |
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
var venn = venn || {'version' : '0.2.5'}; | |
(function(venn) { | |
"use strict"; | |
venn.VennDiagram = function() { | |
var width = 800, | |
height = 650, | |
padding = 15, | |
duration = 1000, | |
orientation = Math.PI / 2, | |
normalize = true, | |
wrap = true, | |
styled = true, | |
fontSize = null, | |
colours = d3.scale.ordinal() | |
.range(["#0a2756","#e60024","#45CFD7","#a173d1", "#0FF66A3","#00FFFF","#6ab975","#5687d1", "#F5E94B", "bbbbbb", "#00B8E6"]), | |
layoutFunction = venn.venn; | |
function chart(selection) { | |
var data = selection.datum(); | |
var solution = layoutFunction(data); | |
if (normalize) { | |
solution = venn.normalizeSolution(solution, orientation); | |
} | |
var circles = venn.scaleSolution(solution, width, height, padding); | |
var textCentres = computeTextCentres(circles, data); | |
// draw out a svg | |
var svg = selection.selectAll("svg").data([circles]); | |
svg.enter().append("svg"); | |
svg.attr("width", width) | |
.attr("height", height); | |
// to properly transition intersection areas, we need the | |
// previous circles locations. load from elements | |
var previous = {}, hasPrevious = false; | |
svg.selectAll("g").each(function (d) { | |
var path = d3.select(this).select("path").attr("d"); | |
if ((d.sets.length == 1) && path) { | |
hasPrevious = true; | |
previous[d.sets[0]] = venn.circleFromPath(path); | |
} | |
}); | |
// interpolate intersection area paths between previous and | |
// current paths | |
var pathTween = function(d) { | |
return function(t) { | |
var c = d.sets.map(function(set) { | |
var start = previous[set], end = circles[set]; | |
if (!start) { | |
start = {x : width/2, y : height/2, radius : 1}; | |
} | |
if (!end) { | |
end = {x : width/2, y : height/2, radius : 1}; | |
} | |
return {'x' : start.x * (1 - t) + end.x * t, | |
'y' : start.y * (1 - t) + end.y * t, | |
'radius' : start.radius * (1 - t) + end.radius * t}; | |
}); | |
return venn.intersectionAreaPath(c); | |
}; | |
}; | |
// update data, joining on the set ids | |
var nodes = svg.selectAll("g") | |
.data(data, function(d) { return d.sets; }); | |
// create new nodes | |
var enter = nodes.enter() | |
.append('g') | |
.attr("class", function(d) { | |
return "venn-area venn-" + | |
(d.sets.length == 1 ? "circle" : "intersection"); | |
}) | |
.attr("data-venn-sets", function(d) { | |
return d.sets.join("_"); | |
}); | |
var enterPath = enter.append("path"), | |
enterText = enter.append("text") | |
.attr("class", "label") | |
.text(function (d) { return label(d); } ) | |
.attr("text-anchor", "middle") | |
.attr("dy", ".35em") | |
.attr("x", width/2) | |
.attr("y", height/2); | |
// apply minimal style if wanted | |
if (styled) { | |
enterPath.style("fill-opacity", "0") | |
.filter(function (d) { return d.sets.length == 1; } ) | |
.style("fill", function(d) { return colours(label(d)); }) | |
.style("fill-opacity", ".25"); | |
enterText | |
.style("fill", function(d) { return d.sets.length == 1 ? colours(label(d)) : "#444"; }); | |
} | |
// update existing | |
var update = nodes.transition("venn").duration(hasPrevious ? duration : 0); | |
update.select("path") | |
.attrTween("d", pathTween); | |
var updateText = update.select("text") | |
.text(function (d) { return label(d); } ) | |
.attr("x", function(d) { | |
return Math.floor(textCentres[d.sets].x); | |
}) | |
.attr("y", function(d) { | |
return Math.floor(textCentres[d.sets].y); | |
}); | |
if (wrap) { | |
updateText.each("end", venn.wrapText(circles, label)); | |
} | |
// remove old | |
var exit = nodes.exit().transition('venn').duration(duration).remove(); | |
exit.select("path") | |
.attrTween("d", pathTween); | |
var exitText = exit.select("text") | |
.text(function (d) { return label(d); } ) | |
.attr("x", width/2) | |
.attr("y", height/2); | |
// if we've been passed a fontSize explicitly, use it to | |
// transition | |
if (fontSize !== null) { | |
enterText.style("font-size", "0px"); | |
updateText.style("font-size", fontSize); | |
exitText.style("font-size", "0px"); | |
} | |
return {'circles': circles, | |
'textCentres': textCentres, | |
'nodes': nodes, | |
'enter': enter, | |
'update': update, | |
'exit': exit}; | |
} | |
function label(d) { | |
if (d.sets.length == 1) { | |
return '' + d.sets[0]; | |
} | |
} | |
chart.wrap = function(_) { | |
if (!arguments.length) return wrap; | |
wrap = _; | |
return chart; | |
}; | |
chart.width = function(_) { | |
if (!arguments.length) return width; | |
width = _; | |
return chart; | |
}; | |
chart.height = function(_) { | |
if (!arguments.length) return height; | |
height = _; | |
return chart; | |
}; | |
chart.padding = function(_) { | |
if (!arguments.length) return padding; | |
padding = _; | |
return chart; | |
}; | |
chart.colours = function(_) { | |
if (!arguments.length) return colours; | |
colours = _; | |
return chart; | |
}; | |
chart.fontSize = function(_) { | |
if (!arguments.length) return fontSize; | |
fontSize = _; | |
return chart; | |
}; | |
chart.duration = function(_) { | |
if (!arguments.length) return duration; | |
duration = _; | |
return chart; | |
}; | |
chart.layoutFunction = function(_) { | |
if (!arguments.length) return layoutFunction; | |
layoutFunction = _; | |
return chart; | |
}; | |
chart.normalize = function(_) { | |
if (!arguments.length) return normalize; | |
normalize = _; | |
return chart; | |
}; | |
chart.styled = function(_) { | |
if (!arguments.length) return styled; | |
styled = _; | |
return chart; | |
}; | |
chart.orientation = function(_) { | |
if (!arguments.length) return orientation; | |
orientation = _; | |
return chart; | |
}; | |
return chart; | |
}; | |
// sometimes text doesn't fit inside the circle, if thats the case lets wrap | |
// the text here such that it fits | |
// todo: looks like this might be merged into d3 ( | |
// https://github.com/mbostock/d3/issues/1642), | |
// also worth checking out is | |
// http://engineering.findthebest.com/wrapping-axis-labels-in-d3-js/ | |
// this seems to be one of those things that should be easy but isn't | |
venn.wrapText = function(circles, labeller) { | |
return function() { | |
var text = d3.select(this), | |
data = text.datum(), | |
width = circles[data.sets[0]].radius || 50, | |
label = labeller(data) || ''; | |
var words = label.split(/\s+/).reverse(), | |
maxLines = 3, | |
minChars = (label.length + words.length) / maxLines, | |
word = words.pop(), | |
line = [word], | |
joined, | |
lineNumber = 0, | |
lineHeight = 1.1, // ems | |
tspan = text.text(null).append("tspan").text(word); | |
while (true) { | |
word = words.pop(); | |
if (!word) break; | |
line.push(word); | |
joined = line.join(" "); | |
tspan.text(joined); | |
if (joined.length > minChars && tspan.node().getComputedTextLength() > width) { | |
line.pop(); | |
tspan.text(line.join(" ")); | |
line = [word]; | |
tspan = text.append("tspan").text(word); | |
lineNumber++; | |
} | |
} | |
var initial = 0.35 - lineNumber * lineHeight / 2, | |
x = text.attr("x"), | |
y = text.attr("y"); | |
text.selectAll("tspan") | |
.attr("x", x) | |
.attr("y", y) | |
.attr("dy", function(d, i) { | |
return (initial + i * lineHeight) + "em"; | |
}); | |
}; | |
}; | |
function circleMargin(current, interior, exterior) { | |
var margin = interior[0].radius - venn.distance(interior[0], current), i, m; | |
for (i = 1; i < interior.length; ++i) { | |
m = interior[i].radius - venn.distance(interior[i], current); | |
if (m <= margin) { | |
margin = m; | |
} | |
} | |
for (i = 0; i < exterior.length; ++i) { | |
m = venn.distance(exterior[i], current) - exterior[i].radius; | |
if (m <= margin) { | |
margin = m; | |
} | |
} | |
return margin; | |
} | |
// compute the center of some circles by maximizing the margin of | |
// the center point relative to the circles (interior) after subtracting | |
// nearby circles (exterior) | |
function computeTextCentre(interior, exterior) { | |
// get an initial estimate by sampling around the interior circles | |
// and taking the point with the biggest margin | |
var points = [], i; | |
for (i = 0; i < interior.length; ++i) { | |
var c = interior[i]; | |
points.push({x: c.x, y: c.y}); | |
points.push({x: c.x + c.radius/2, y: c.y}); | |
points.push({x: c.x - c.radius/2, y: c.y}); | |
points.push({x: c.x, y: c.y + c.radius/2}); | |
points.push({x: c.x, y: c.y - c.radius/2}); | |
} | |
var initial = points[0], margin = circleMargin(points[0], interior, exterior); | |
for (i = 1; i < points.length; ++i) { | |
var m = circleMargin(points[i], interior, exterior); | |
if (m >= margin) { | |
initial = points[i]; | |
margin = m; | |
} | |
} | |
// maximize the margin numerically | |
var solution = venn.fmin( | |
function(p) { return -1 * circleMargin({x: p[0], y: p[1]}, interior, exterior); }, | |
[initial.x, initial.y], | |
{maxIterations:500, minErrorDelta:1e-10}).solution; | |
var ret = {x: solution[0], y: solution[1]}; | |
// check solution, fallback as needed (happens if fully overlapped | |
// etc) | |
var valid = true; | |
for (i = 0; i < interior.length; ++i) { | |
if (venn.distance(ret, interior[i]) > interior[i].radius) { | |
valid = false; | |
break; | |
} | |
} | |
for (i = 0; i < exterior.length; ++i) { | |
if (venn.distance(ret, exterior[i]) < exterior[i].radius) { | |
valid = false; | |
break; | |
} | |
} | |
if (!valid) { | |
if (interior.length == 1) { | |
ret = {x: interior[0].x, y: interior[0].y}; | |
} else { | |
var areaStats = {}; | |
venn.intersectionArea(interior, areaStats); | |
if (areaStats.arcs.length === 0) { | |
ret = {'x': 0, 'y': -1000, disjoint:true}; | |
} else if (areaStats.arcs.length == 1) { | |
ret = {'x': areaStats.arcs[0].circle.x, | |
'y': areaStats.arcs[0].circle.y}; | |
} else if (exterior.length) { | |
// try again without other circles | |
ret = computeTextCentre(interior, []); | |
} else { | |
// take average of all the points in the intersection | |
// polygon. this should basically never happen | |
// and has some issues: | |
// https://github.com/benfred/venn.js/issues/48#issuecomment-146069777 | |
ret = venn.getCenter(areaStats.arcs.map(function (a) { return a.p1; })); | |
} | |
} | |
} | |
return ret; | |
} | |
venn.computeTextCentre = computeTextCentre; | |
// given a dictionary of {setid : circle}, returns | |
// a dictionary of setid to list of circles that completely overlap it | |
function getOverlappingCircles(circles) { | |
var ret = {}, circleids = []; | |
for (var circleid in circles) { | |
circleids.push(circleid); | |
ret[circleid] = []; | |
} | |
for (var i = 0; i < circleids.length; i++) { | |
var a = circles[circleids[i]]; | |
for (var j = i + 1; j < circleids.length; ++j) { | |
var b = circles[circleids[j]], | |
d = venn.distance(a, b); | |
if (d + b.radius <= a.radius + 1e-10) { | |
ret[circleids[j]].push(circleids[i]); | |
} else if (d + a.radius <= b.radius + 1e-10) { | |
ret[circleids[i]].push(circleids[j]); | |
} | |
} | |
} | |
return ret; | |
} | |
function computeTextCentres(circles, areas) { | |
var ret = {}, overlapped = getOverlappingCircles(circles); | |
for (var i = 0; i < areas.length; ++i) { | |
var area = areas[i].sets, areaids = {}, exclude = {}; | |
for (var j = 0; j < area.length; ++j) { | |
areaids[area[j]] = true; | |
var overlaps = overlapped[area[j]]; | |
// keep track of any circles that overlap this area, | |
// and don't consider for purposes of computing the text | |
// centre | |
for (var k = 0; k < overlaps.length; ++k) { | |
exclude[overlaps[k]] = true; | |
} | |
} | |
var interior = [], exterior = []; | |
for (var setid in circles) { | |
if (setid in areaids) { | |
interior.push(circles[setid]); | |
} else if (!(setid in exclude)) { | |
exterior.push(circles[setid]); | |
} | |
} | |
var centre = computeTextCentre(interior, exterior); | |
ret[area] = centre; | |
if (centre.disjoint && (areas[i].size > 0)) { | |
console.log("WARNING: area " + area + " not represented on screen"); | |
} | |
} | |
return ret; | |
} | |
venn.computeTextCentres = computeTextCentres; | |
// sorts all areas in the venn diagram, so that | |
// a particular area is on top (relativeTo) - and | |
// all other areas are so that the smallest areas are on top | |
venn.sortAreas = function(div, relativeTo) { | |
// figure out sets that are completly overlapped by relativeTo | |
var overlaps = getOverlappingCircles(div.selectAll("svg").datum()); | |
var exclude = {}; | |
for (var i = 0; i < relativeTo.sets.length; ++i) { | |
var check = relativeTo.sets[i]; | |
for (var setid in overlaps) { | |
var overlap = overlaps[setid]; | |
for (var j = 0; j < overlap.length; ++j) { | |
if (overlap[j] == check) { | |
exclude[setid] = true; | |
break; | |
} | |
} | |
} | |
} | |
// checks that all sets are in exclude; | |
function shouldExclude(sets) { | |
for (var i = 0; i < sets.length; ++i) { | |
if (!(sets[i] in exclude)) { | |
return false; | |
} | |
} | |
return true; | |
} | |
// need to sort div's so that Z order is correct | |
div.selectAll("g").sort(function (a, b) { | |
// highest order set intersections first | |
if (a.sets.length != b.sets.length) { | |
return a.sets.length - b.sets.length; | |
} | |
if (a == relativeTo) { | |
return shouldExclude(b.sets) ? -1 : 1; | |
} | |
if (b == relativeTo) { | |
return shouldExclude(a.sets) ? 1 : -1; | |
} | |
// finally by size | |
return b.size - a.size; | |
}); | |
}; | |
venn.circlePath = function(x, y, r) { | |
var ret = []; | |
ret.push("\nM", x, y); | |
ret.push("\nm", -r, 0); | |
ret.push("\na", r, r, 0, 1, 0, r *2, 0); | |
ret.push("\na", r, r, 0, 1, 0,-r *2, 0); | |
return ret.join(" "); | |
}; | |
// inverse of the circlePath function, returns a circle object from an svg path | |
venn.circleFromPath = function(path) { | |
var tokens = path.split(' '); | |
return {'x' : parseFloat(tokens[1]), | |
'y' : parseFloat(tokens[2]), | |
'radius' : -parseFloat(tokens[4]) | |
}; | |
}; | |
/** returns a svg path of the intersection area of a bunch of circles */ | |
venn.intersectionAreaPath = function(circles) { | |
var stats = {}; | |
venn.intersectionArea(circles, stats); | |
var arcs = stats.arcs; | |
if (arcs.length === 0) { | |
return "M 0 0"; | |
} else if (arcs.length == 1) { | |
var circle = arcs[0].circle; | |
return venn.circlePath(circle.x, circle.y, circle.radius); | |
} else { | |
// draw path around arcs | |
var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y]; | |
for (var i = 0; i < arcs.length; ++i) { | |
var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r; | |
ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, | |
arc.p1.x, arc.p1.y); | |
} | |
return ret.join(" "); | |
} | |
}; | |
})(venn); | |
(function(venn) { | |
"use strict"; | |
/** given a list of set objects, and their corresponding overlaps. | |
updates the (x, y, radius) attribute on each set such that their positions | |
roughly correspond to the desired overlaps */ | |
venn.venn = function(areas, parameters) { | |
parameters = parameters || {}; | |
parameters.maxIterations = parameters.maxIterations || 500; | |
var lossFunction = parameters.lossFunction || venn.lossFunction; | |
var initialLayout = parameters.initialLayout || venn.bestInitialLayout; | |
var fmin = parameters.fmin || venn.fmin; | |
// add in missing pairwise areas as having 0 size | |
areas = addMissingAreas(areas); | |
// initial layout is done greedily | |
var circles = initialLayout(areas); | |
// transform x/y coordinates to a vector to optimize | |
var initial = [], setids = [], setid; | |
for (setid in circles) { | |
if (circles.hasOwnProperty(setid)) { | |
initial.push(circles[setid].x); | |
initial.push(circles[setid].y); | |
setids.push(setid); | |
} | |
} | |
// optimize initial layout from our loss function | |
var totalFunctionCalls = 0; | |
var solution = fmin( | |
function(values) { | |
totalFunctionCalls += 1; | |
var current = {}; | |
for (var i = 0; i < setids.length; ++i) { | |
var setid = setids[i]; | |
current[setid] = {x: values[2 * i], | |
y: values[2 * i + 1], | |
radius : circles[setid].radius, | |
// size : circles[setid].size | |
}; | |
} | |
return lossFunction(current, areas); | |
}, | |
initial, | |
parameters); | |
// transform solution vector back to x/y points | |
var positions = solution.solution; | |
for (var i = 0; i < setids.length; ++i) { | |
setid = setids[i]; | |
circles[setid].x = positions[2 * i]; | |
circles[setid].y = positions[2 * i + 1]; | |
} | |
return circles; | |
}; | |
var SMALL = 1e-10; | |
/** Returns the distance necessary for two circles of radius r1 + r2 to | |
have the overlap area 'overlap' */ | |
venn.distanceFromIntersectArea = function(r1, r2, overlap) { | |
// handle complete overlapped circles | |
if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap + SMALL) { | |
return Math.abs(r1 - r2); | |
} | |
return venn.bisect(function(distance) { | |
return venn.circleOverlap(r1, r2, distance) - overlap; | |
}, 0, r1 + r2); | |
}; | |
/** Missing pair-wise intersection area data can cause problems: | |
treating as an unknown means that sets will be laid out overlapping, | |
which isn't what people expect. To reflect that we want disjoint sets | |
here, set the overlap to 0 for all missing pairwise set intersections */ | |
function addMissingAreas(areas) { | |
areas = areas.slice(); | |
// two circle intersections that aren't defined | |
var ids = [], pairs = {}, i, j, a, b; | |
for (i = 0; i < areas.length; ++i) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
ids.push(area.sets[0]); | |
} else if (area.sets.length == 2) { | |
a = area.sets[0]; | |
b = area.sets[1]; | |
pairs[[a, b]] = true; | |
pairs[[b, a]] = true; | |
} | |
} | |
ids.sort(function(a, b) { return a > b; }); | |
for (i = 0; i < ids.length; ++i) { | |
a = ids[i]; | |
for (j = i + 1; j < ids.length; ++j) { | |
b = ids[j]; | |
if (!([a, b] in pairs)) { | |
areas.push({'sets': [a, b], | |
'size': 0}); | |
} | |
} | |
} | |
return areas; | |
} | |
/// Returns two matrices, one of the euclidean distances between the sets | |
/// and the other indicating if there are subset or disjoint set relationships | |
venn.getDistanceMatrices = function(areas, sets, setids) { | |
// initialize an empty distance matrix between all the points | |
var distances = venn.zerosM(sets.length, sets.length), | |
constraints = venn.zerosM(sets.length, sets.length); | |
// compute required distances between all the sets such that | |
// the areas match | |
areas.filter(function(x) { return x.sets.length == 2; }) | |
.map(function(current) { | |
var left = setids[current.sets[0]], | |
right = setids[current.sets[1]], | |
r1 = Math.sqrt(sets[left].size / Math.PI), | |
r2 = Math.sqrt(sets[right].size / Math.PI), | |
distance = venn.distanceFromIntersectArea(r1, r2, current.size); | |
distances[left][right] = distances[right][left] = distance; | |
// also update constraints to indicate if its a subset or disjoint | |
// relationship | |
var c = 0; | |
if (current.size + 1e-10 >= Math.min(sets[left].size, | |
sets[right].size)) { | |
c = 1; | |
} else if (current.size <= 1e-10) { | |
c = -1; | |
} | |
constraints[left][right] = constraints[right][left] = c; | |
}); | |
return {distances: distances, constraints: constraints}; | |
}; | |
/// computes the gradient and loss simulatenously for our constrained MDS optimizer | |
function constrainedMDSGradient(x, fxprime, distances, constraints) { | |
var loss = 0, i; | |
for (i = 0; i < fxprime.length; ++i) { | |
fxprime[i] = 0; | |
} | |
for (i = 0; i < distances.length; ++i) { | |
var xi = x[2 * i], yi = x[2 * i + 1]; | |
for (var j = i + 1; j < distances.length; ++j) { | |
var xj = x[2 * j], yj = x[2 * j + 1], | |
dij = distances[i][j], | |
constraint = constraints[i][j]; | |
var squaredDistance = (xj - xi) * (xj - xi) + (yj - yi) * (yj - yi), | |
distance = Math.sqrt(squaredDistance), | |
delta = squaredDistance - dij * dij; | |
if (((constraint > 0) && (distance <= dij)) || | |
((constraint < 0) && (distance >= dij))) { | |
continue; | |
} | |
loss += 2 * delta * delta; | |
fxprime[2*i] += 4 * delta * (xi - xj); | |
fxprime[2*i + 1] += 4 * delta * (yi - yj); | |
fxprime[2*j] += 4 * delta * (xj - xi); | |
fxprime[2*j + 1] += 4 * delta * (yj - yi); | |
} | |
} | |
return loss; | |
} | |
/// takes the best working variant of either constrained MDS or greedy | |
venn.bestInitialLayout = function(areas, params) { | |
var initial = venn.greedyLayout(areas, params); | |
// greedylayout is sufficient for all 2/3 circle cases. try out | |
// constrained MDS for higher order problems, take its output | |
// if it outperforms. (greedy is aesthetically better on 2/3 circles | |
// since it axis aligns) | |
if (areas.length >= 8) { | |
var constrained = venn.constrainedMDSLayout(areas, params), | |
constrainedLoss = venn.lossFunction(constrained, areas), | |
greedyLoss = venn.lossFunction(initial, areas); | |
if (constrainedLoss + 1e-8 < greedyLoss) { | |
initial = constrained; | |
} | |
} | |
return initial; | |
}; | |
/// use the constrained MDS variant to generate an initial layout | |
venn.constrainedMDSLayout = function(areas, params) { | |
params = params || {}; | |
var restarts = params.restarts || 10; | |
// bidirectionally map sets to a rowid (so we can create a matrix) | |
var sets = [], setids = {}, i; | |
for (i = 0; i < areas.length; ++i ) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
setids[area.sets[0]] = sets.length; | |
sets.push(area); | |
} | |
} | |
var matrices = venn.getDistanceMatrices(areas, sets, setids), | |
distances = matrices.distances, | |
constraints = matrices.constraints; | |
// keep distances bounded, things get messed up otherwise. | |
// TODO: proper preconditioner? | |
var norm = venn.norm2(distances.map(venn.norm2))/(distances.length); | |
distances = distances.map(function (row) { | |
return row.map(function (value) { return value / norm; });}); | |
var obj = function(x, fxprime) { | |
return constrainedMDSGradient(x, fxprime, distances, constraints); | |
}; | |
var best, current; | |
for (i = 0; i < restarts; ++i) { | |
var initial = venn.zeros(distances.length*2).map(Math.random); | |
current = venn.minimizeConjugateGradient(obj, initial, params); | |
if (!best || (current.fx < best.fx)) { | |
best = current; | |
} | |
} | |
var positions = best.x; | |
// translate rows back to (x,y,radius) coordinates | |
var circles = {}; | |
for (i = 0; i < sets.length; ++i) { | |
var set = sets[i]; | |
circles[set.sets[0]] = { | |
x: positions[2*i] * norm, | |
y: positions[2*i + 1] * norm, | |
radius: Math.sqrt(set.size / Math.PI) | |
}; | |
} | |
if (params.history) { | |
for (i = 0; i < params.history.length; ++i) { | |
venn.multiplyBy(params.history[i].x, norm); | |
} | |
} | |
return circles; | |
}; | |
/** Lays out a Venn diagram greedily, going from most overlapped sets to | |
least overlapped, attempting to position each new set such that the | |
overlapping areas to already positioned sets are basically right */ | |
venn.greedyLayout = function(areas) { | |
// define a circle for each set | |
var circles = {}, setOverlaps = {}, set; | |
for (var i = 0; i < areas.length; ++i) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
set = area.sets[0]; | |
circles[set] = {x: 1e10, y: 1e10, | |
rowid: circles.length, | |
size: area.size, | |
radius: Math.sqrt(area.size / Math.PI)}; | |
setOverlaps[set] = []; | |
} | |
} | |
areas = areas.filter(function(a) { return a.sets.length == 2; }); | |
// map each set to a list of all the other sets that overlap it | |
for (i = 0; i < areas.length; ++i) { | |
var current = areas[i]; | |
var weight = current.hasOwnProperty('weight') ? current.weight : 1.0; | |
var left = current.sets[0], right = current.sets[1]; | |
// completely overlapped circles shouldn't be positioned early here | |
if (current.size + SMALL >= Math.min(circles[left].size, | |
circles[right].size)) { | |
weight = 0; | |
} | |
setOverlaps[left].push ({set:right, size:current.size, weight:weight}); | |
setOverlaps[right].push({set:left, size:current.size, weight:weight}); | |
} | |
// get list of most overlapped sets | |
var mostOverlapped = []; | |
for (set in setOverlaps) { | |
if (setOverlaps.hasOwnProperty(set)) { | |
var size = 0; | |
for (i = 0; i < setOverlaps[set].length; ++i) { | |
size += setOverlaps[set][i].size * setOverlaps[set][i].weight; | |
} | |
mostOverlapped.push({set: set, size:size}); | |
} | |
} | |
// sort by size desc | |
function sortOrder(a,b) { | |
return b.size - a.size; | |
} | |
mostOverlapped.sort(sortOrder); | |
// keep track of what sets have been laid out | |
var positioned = {}; | |
function isPositioned(element) { | |
return element.set in positioned; | |
} | |
// adds a point to the output | |
function positionSet(point, index) { | |
circles[index].x = point.x; | |
circles[index].y = point.y; | |
positioned[index] = true; | |
} | |
// add most overlapped set at (0,0) | |
positionSet({x: 0, y: 0}, mostOverlapped[0].set); | |
// get distances between all points. TODO, necessary? | |
// answer: probably not | |
// var distances = venn.getDistanceMatrices(circles, areas).distances; | |
for (i = 1; i < mostOverlapped.length; ++i) { | |
var setIndex = mostOverlapped[i].set, | |
overlap = setOverlaps[setIndex].filter(isPositioned); | |
set = circles[setIndex]; | |
overlap.sort(sortOrder); | |
if (overlap.length === 0) { | |
// this shouldn't happen anymore with addMissingAreas | |
throw "ERROR: missing pairwise overlap information"; | |
} | |
var points = []; | |
for (var j = 0; j < overlap.length; ++j) { | |
// get appropriate distance from most overlapped already added set | |
var p1 = circles[overlap[j].set], | |
d1 = venn.distanceFromIntersectArea(set.radius, p1.radius, | |
overlap[j].size); | |
// sample positions at 90 degrees for maximum aesthetics | |
points.push({x : p1.x + d1, y : p1.y}); | |
points.push({x : p1.x - d1, y : p1.y}); | |
points.push({y : p1.y + d1, x : p1.x}); | |
points.push({y : p1.y - d1, x : p1.x}); | |
// if we have at least 2 overlaps, then figure out where the | |
// set should be positioned analytically and try those too | |
for (var k = j + 1; k < overlap.length; ++k) { | |
var p2 = circles[overlap[k].set], | |
d2 = venn.distanceFromIntersectArea(set.radius, p2.radius, | |
overlap[k].size); | |
var extraPoints = venn.circleCircleIntersection( | |
{ x: p1.x, y: p1.y, radius: d1}, | |
{ x: p2.x, y: p2.y, radius: d2}); | |
for (var l = 0; l < extraPoints.length; ++l) { | |
points.push(extraPoints[l]); | |
} | |
} | |
} | |
// we have some candidate positions for the set, examine loss | |
// at each position to figure out where to put it at | |
var bestLoss = 1e50, bestPoint = points[0]; | |
for (j = 0; j < points.length; ++j) { | |
circles[setIndex].x = points[j].x; | |
circles[setIndex].y = points[j].y; | |
var loss = venn.lossFunction(circles, areas); | |
if (loss < bestLoss) { | |
bestLoss = loss; | |
bestPoint = points[j]; | |
} | |
} | |
positionSet(bestPoint, setIndex); | |
} | |
return circles; | |
}; | |
/// Uses multidimensional scaling to approximate a first layout here | |
venn.classicMDSLayout = function(areas) { | |
// bidirectionally map sets to a rowid (so we can create a matrix) | |
var sets = [], setids = {}; | |
for (var i = 0; i < areas.length; ++i ) { | |
var area = areas[i]; | |
if (area.sets.length == 1) { | |
setids[area.sets[0]] = sets.length; | |
sets.push(area); | |
} | |
} | |
// get the distance matrix, and use to position sets | |
var distances = venn.getDistanceMatrices(areas, sets, setids).distances; | |
var positions = mds.classic(distances); | |
// translate rows back to (x,y,radius) coordinates | |
var circles = {}; | |
for (i = 0; i < sets.length; ++i) { | |
var set = sets[i]; | |
circles[set.sets[0]] = { | |
x: positions[i][0], | |
y: positions[i][1], | |
radius: Math.sqrt(set.size / Math.PI) | |
}; | |
} | |
return circles; | |
}; | |
/** Given a bunch of sets, and the desired overlaps between these sets - computes | |
the distance from the actual overlaps to the desired overlaps. Note that | |
this method ignores overlaps of more than 2 circles */ | |
venn.lossFunction = function(sets, overlaps) { | |
var output = 0; | |
function getCircles(indices) { | |
return indices.map(function(i) { return sets[i]; }); | |
} | |
for (var i = 0; i < overlaps.length; ++i) { | |
var area = overlaps[i], overlap; | |
if (area.sets.length == 1) { | |
continue; | |
} else if (area.sets.length == 2) { | |
var left = sets[area.sets[0]], | |
right = sets[area.sets[1]]; | |
overlap = venn.circleOverlap(left.radius, right.radius, | |
venn.distance(left, right)); | |
} else { | |
overlap = venn.intersectionArea(getCircles(area.sets)); | |
} | |
var weight = area.hasOwnProperty('weight') ? area.weight : 1.0; | |
output += weight * (overlap - area.size) * (overlap - area.size); | |
} | |
return output; | |
}; | |
// orientates a bunch of circles to point in orientation | |
function orientateCircles(circles, orientation) { | |
// sort circles by size | |
circles.sort(function (a, b) { return b.radius - a.radius; }); | |
var i; | |
// shift circles so largest circle is at (0, 0) | |
if (circles.length > 0) { | |
var largestX = circles[0].x, | |
largestY = circles[0].y; | |
for (i = 0; i < circles.length; ++i) { | |
circles[i].x -= largestX; | |
circles[i].y -= largestY; | |
} | |
} | |
// rotate circles so that second largest is at an angle of 'orientation' | |
// from largest | |
if (circles.length > 1) { | |
var rotation = Math.atan2(circles[1].x, circles[1].y) - orientation, | |
c = Math.cos(rotation), | |
s = Math.sin(rotation), x, y; | |
for (i = 0; i < circles.length; ++i) { | |
x = circles[i].x; | |
y = circles[i].y; | |
circles[i].x = c * x - s * y; | |
circles[i].y = s * x + c * y; | |
} | |
} | |
// mirror solution if third solution is above plane specified by | |
// first two circles | |
if (circles.length > 2) { | |
var angle = Math.atan2(circles[2].x, circles[2].y) - orientation; | |
while (angle < 0) { angle += 2* Math.PI; } | |
while (angle > 2*Math.PI) { angle -= 2* Math.PI; } | |
if (angle > Math.PI) { | |
var slope = circles[1].y / (1e-10 + circles[1].x); | |
for (i = 0; i < circles.length; ++i) { | |
var d = (circles[i].x + slope * circles[i].y) / (1 + slope*slope); | |
circles[i].x = 2 * d - circles[i].x; | |
circles[i].y = 2 * d * slope - circles[i].y; | |
} | |
} | |
} | |
} | |
venn.disjointCluster = function(circles) { | |
// union-find clustering to get disjoint sets | |
circles.map(function(circle) { circle.parent = circle; }); | |
// path compression step in union find | |
function find(circle) { | |
if (circle.parent !== circle) { | |
circle.parent = find(circle.parent); | |
} | |
return circle.parent; | |
} | |
function union(x, y) { | |
var xRoot = find(x), yRoot = find(y); | |
xRoot.parent = yRoot; | |
} | |
// get the union of all overlapping sets | |
for (var i = 0; i < circles.length; ++i) { | |
for (var j = i + 1; j < circles.length; ++j) { | |
var maxDistance = circles[i].radius + circles[j].radius; | |
if (venn.distance(circles[i], circles[j]) + 1e-10 < maxDistance) { | |
union(circles[j], circles[i]); | |
} | |
} | |
} | |
// find all the disjoint clusters and group them together | |
var disjointClusters = {}, setid; | |
for (i = 0; i < circles.length; ++i) { | |
setid = find(circles[i]).parent.setid; | |
if (!(setid in disjointClusters)) { | |
disjointClusters[setid] = []; | |
} | |
disjointClusters[setid].push(circles[i]); | |
} | |
// cleanup bookkeeping | |
circles.map(function(circle) { delete circle.parent; }); | |
// return in more usable form | |
var ret = []; | |
for (setid in disjointClusters) { | |
if (disjointClusters.hasOwnProperty(setid)) { | |
ret.push(disjointClusters[setid]); | |
} | |
} | |
return ret; | |
}; | |
function getBoundingBox(circles) { | |
var minMax = function(d) { | |
var hi = Math.max.apply(null, circles.map( | |
function(c) { return c[d] + c.radius; } )), | |
lo = Math.min.apply(null, circles.map( | |
function(c) { return c[d] - c.radius;} )); | |
return {max:hi, min:lo}; | |
}; | |
return {xRange: minMax('x'), yRange: minMax('y')}; | |
} | |
venn.normalizeSolution = function(solution, orientation) { | |
orientation = orientation || Math.PI/2; | |
// work with a list instead of a dictionary, and take a copy so we | |
// don't mutate input | |
var circles = [], i, setid; | |
for (setid in solution) { | |
if (solution.hasOwnProperty(setid)) { | |
var previous = solution[setid]; | |
circles.push({x: previous.x, | |
y: previous.y, | |
radius: previous.radius, | |
setid: setid}); | |
} | |
} | |
// get all the disjoint clusters | |
var clusters = venn.disjointCluster(circles); | |
// orientate all disjoint sets, get sizes | |
for (i = 0; i < clusters.length; ++i) { | |
orientateCircles(clusters[i], orientation); | |
var bounds = getBoundingBox(clusters[i]); | |
clusters[i].size = (bounds.xRange.max - bounds.xRange.min) * (bounds.yRange.max - bounds.yRange.min); | |
clusters[i].bounds = bounds; | |
} | |
clusters.sort(function(a, b) { return b.size - a.size; }); | |
// orientate the largest at 0,0, and get the bounds | |
circles = clusters[0]; | |
var returnBounds = circles.bounds; | |
var spacing = (returnBounds.xRange.max - returnBounds.xRange.min)/50; | |
function addCluster(cluster, right, bottom) { | |
if (!cluster) return; | |
var bounds = cluster.bounds, xOffset, yOffset, centreing; | |
if (right) { | |
xOffset = returnBounds.xRange.max - bounds.xRange.min + spacing; | |
} else { | |
xOffset = returnBounds.xRange.max - bounds.xRange.max - spacing; | |
centreing = (bounds.xRange.max - bounds.xRange.min) / 2 - | |
(returnBounds.xRange.max - returnBounds.xRange.min) / 2; | |
if (centreing < 0) xOffset += centreing; | |
} | |
if (bottom) { | |
yOffset = returnBounds.yRange.max - bounds.yRange.min + spacing; | |
} else { | |
yOffset = returnBounds.yRange.max - bounds.yRange.max - spacing; | |
centreing = (bounds.yRange.max - bounds.yRange.min) / 2 - | |
(returnBounds.yRange.max - returnBounds.yRange.min) / 2; | |
if (centreing < 0) yOffset += centreing; | |
} | |
for (var j = 0; j < cluster.length; ++j) { | |
cluster[j].x += xOffset; | |
cluster[j].y += yOffset; | |
circles.push(cluster[j]); | |
} | |
} | |
var index = 1; | |
while (index < clusters.length) { | |
addCluster(clusters[index], true, false); | |
addCluster(clusters[index+1], false, true); | |
addCluster(clusters[index+2], true, true); | |
index += 3; | |
// have one cluster (in top left). lay out next three relative | |
// to it in a grid | |
returnBounds = getBoundingBox(circles); | |
} | |
// convert back to solution form | |
var ret = {}; | |
for (i = 0; i < circles.length; ++i) { | |
ret[circles[i].setid] = circles[i]; | |
} | |
return ret; | |
}; | |
/** Scales a solution from venn.venn or venn.greedyLayout such that it fits in | |
a rectangle of width/height - with padding around the borders. also | |
centers the diagram in the available space at the same time */ | |
venn.scaleSolution = function(solution, width, height, padding) { | |
var circles = [], setids = []; | |
for (var setid in solution) { | |
if (solution.hasOwnProperty(setid)) { | |
setids.push(setid); | |
circles.push(solution[setid]); | |
} | |
} | |
width -= 2*padding; | |
height -= 2*padding; | |
var bounds = getBoundingBox(circles), | |
xRange = bounds.xRange, | |
yRange = bounds.yRange, | |
xScaling = width / (xRange.max - xRange.min), | |
yScaling = height / (yRange.max - yRange.min), | |
scaling = Math.min(yScaling, xScaling), | |
// while we're at it, center the diagram too | |
xOffset = (width - (xRange.max - xRange.min) * scaling) / 2, | |
yOffset = (height - (yRange.max - yRange.min) * scaling) / 2; | |
var scaled = {}; | |
for (var i = 0; i < circles.length; ++i) { | |
var circle = circles[i]; | |
scaled[setids[i]] = { | |
radius: scaling * circle.radius, | |
x: padding + xOffset + (circle.x - xRange.min) * scaling, | |
y: padding + yOffset + (circle.y - yRange.min) * scaling, | |
}; | |
} | |
return scaled; | |
}; | |
})(venn); | |
(function(venn) { | |
"use strict"; | |
/** finds the zeros of a function, given two starting points (which must | |
* have opposite signs */ | |
venn.bisect = function(f, a, b, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || 100, | |
tolerance = parameters.tolerance || 1e-10, | |
fA = f(a), | |
fB = f(b), | |
delta = b - a; | |
if (fA * fB > 0) { | |
throw "Initial bisect points must have opposite signs"; | |
} | |
if (fA === 0) return a; | |
if (fB === 0) return b; | |
for (var i = 0; i < maxIterations; ++i) { | |
delta /= 2; | |
var mid = a + delta, | |
fMid = f(mid); | |
if (fMid * fA >= 0) { | |
a = mid; | |
} | |
if ((Math.abs(delta) < tolerance) || (fMid === 0)) { | |
return mid; | |
} | |
} | |
return a + delta; | |
}; | |
// need some basic operations on vectors, rather than adding a dependency, | |
// just define here | |
function zeros(x) { var r = new Array(x); for (var i = 0; i < x; ++i) { r[i] = 0; } return r; } | |
function zerosM(x,y) { return zeros(x).map(function() { return zeros(y); }); } | |
venn.zerosM = zerosM; | |
venn.zeros = zeros; | |
function dot(a, b) { | |
var ret = 0; | |
for (var i = 0; i < a.length; ++i) { | |
ret += a[i] * b[i]; | |
} | |
return ret; | |
} | |
function norm2(a) { | |
return Math.sqrt(dot(a, a)); | |
} | |
venn.norm2 = norm2; | |
function multiplyBy(a, c) { | |
for (var i = 0; i < a.length; ++i) { | |
a[i] *= c; | |
} | |
} | |
venn.multiplyBy = multiplyBy; | |
function weightedSum(ret, w1, v1, w2, v2) { | |
for (var j = 0; j < ret.length; ++j) { | |
ret[j] = w1 * v1[j] + w2 * v2[j]; | |
} | |
} | |
/** minimizes a function using the downhill simplex method */ | |
venn.fmin = function(f, x0, parameters) { | |
parameters = parameters || {}; | |
var maxIterations = parameters.maxIterations || x0.length * 200, | |
nonZeroDelta = parameters.nonZeroDelta || 1.1, | |
zeroDelta = parameters.zeroDelta || 0.001, | |
minErrorDelta = parameters.minErrorDelta || 1e-6, | |
rho = parameters.rho || 1, | |
chi = parameters.chi || 2, | |
psi = parameters.psi || -0.5, | |
sigma = parameters.sigma || 0.5, | |
callback = parameters.callback, | |
temp; | |
// initialize simplex. | |
var N = x0.length, | |
simplex = new Array(N + 1); | |
simplex[0] = x0; | |
simplex[0].fx = f(x0); | |
for (var i = 0; i < N; ++i) { | |
var point = x0.slice(); | |
point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta; | |
simplex[i+1] = point; | |
simplex[i+1].fx = f(point); | |
} | |
var sortOrder = function(a, b) { return a.fx - b.fx; }; | |
var centroid = x0.slice(), | |
reflected = x0.slice(), | |
contracted = x0.slice(), | |
expanded = x0.slice(); | |
for (var iteration = 0; iteration < maxIterations; ++iteration) { | |
simplex.sort(sortOrder); | |
if (callback) { | |
callback(simplex); | |
} | |
if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) { | |
break; | |
} | |
// compute the centroid of all but the worst point in the simplex | |
for (i = 0; i < N; ++i) { | |
centroid[i] = 0; | |
for (var j = 0; j < N; ++j) { | |
centroid[i] += simplex[j][i]; | |
} | |
centroid[i] /= N; | |
} | |
// reflect the worst point past the centroid and compute loss at reflected | |
// point | |
var worst = simplex[N]; | |
weightedSum(reflected, 1+rho, centroid, -rho, worst); | |
reflected.fx = f(reflected); | |
// if the reflected point is the best seen, then possibly expand | |
if (reflected.fx <= simplex[0].fx) { | |
weightedSum(expanded, 1+chi, centroid, -chi, worst); | |
expanded.fx = f(expanded); | |
if (expanded.fx < reflected.fx) { | |
temp = simplex[N]; | |
simplex[N] = expanded; | |
expanded = temp; | |
} else { | |
temp = simplex[N]; | |
simplex[N] = reflected; | |
reflected = temp; | |
} | |
} | |
// if the reflected point is worse than the second worst, we need to | |
// contract | |
else if (reflected.fx >= simplex[N-1].fx) { | |
var shouldReduce = false; | |
if (reflected.fx <= worst.fx) { | |
// do an inside contraction | |
weightedSum(contracted, 1+psi, centroid, -psi, worst); | |
contracted.fx = f(contracted); | |
if (contracted.fx < worst.fx) { | |
temp = simplex[N]; | |
simplex[N] = contracted; | |
contracted = temp; | |
} else { | |
shouldReduce = true; | |
} | |
} else { | |
// do an outside contraction | |
weightedSum(contracted, 1-psi * rho, centroid, psi*rho, worst); | |
contracted.fx = f(contracted); | |
if (contracted.fx <= reflected.fx) { | |
temp = simplex[N]; | |
simplex[N] = contracted; | |
contracted = temp; | |
} else { | |
shouldReduce = true; | |
} | |
} | |
if (shouldReduce) { | |
// do reduction. doesn't actually happen that often | |
for (i = 1; i < simplex.length; ++i) { | |
weightedSum(simplex[i], 1 - sigma, simplex[0], sigma - 1, simplex[i]); | |
simplex[i].fx = f(simplex[i]); | |
} | |
} | |
} else { | |
temp = simplex[N]; | |
simplex[N] = reflected; | |
reflected = temp; | |
} | |
} | |
simplex.sort(sortOrder); | |
return {f : simplex[0].fx, | |
solution : simplex[0]}; | |
}; | |
venn.minimizeConjugateGradient = function(f, initial, params) { | |
// allocate all memory up front here, keep out of the loop for perfomance | |
// reasons | |
var current = {x: initial.slice(), fx: 0, fxprime: initial.slice()}, | |
next = {x: initial.slice(), fx: 0, fxprime: initial.slice()}, | |
yk = initial.slice(), | |
pk, temp, | |
a = 1, | |
maxIterations; | |
params = params || {}; | |
maxIterations = params.maxIterations || initial.length * 5; | |
current.fx = f(current.x, current.fxprime); | |
pk = current.fxprime.slice(); | |
multiplyBy(pk, -1); | |
for (var i = 0; i < maxIterations; ++i) { | |
if (params.history) { | |
params.history.push({x: current.x.slice(), | |
fx: current.fx, | |
fxprime: current.fxprime.slice()}); | |
} | |
a = venn.wolfeLineSearch(f, pk, current, next, a); | |
if (!a) { | |
// faiiled to find point that satifies wolfe conditions. | |
// reset direction for next iteration | |
for (var j = 0; j < pk.length; ++j) { | |
pk[j] = -1 * current.fxprime[j]; | |
} | |
} else { | |
// update direction using Polak–Ribiere CG method | |
weightedSum(yk, 1, next.fxprime, -1, current.fxprime); | |
var delta_k = dot(current.fxprime, current.fxprime), | |
beta_k = Math.max(0, dot(yk, next.fxprime) / delta_k); | |
weightedSum(pk, beta_k, pk, -1, next.fxprime); | |
temp = current; | |
current = next; | |
next = temp; | |
} | |
if (norm2(current.fxprime) <= 1e-5) { | |
break; | |
} | |
} | |
if (params.history) { | |
params.history.push({x: current.x.slice(), | |
fx: current.fx, | |
fxprime: current.fxprime.slice()}); | |
} | |
return current; | |
}; | |
var c1 = 1e-6, c2 = 0.1; | |
/// searches along line 'pk' for a point that satifies the wolfe conditions | |
/// See 'Numerical Optimization' by Nocedal and Wright p59-60 | |
venn.wolfeLineSearch = function(f, pk, current, next, a) { | |
var phi0 = current.fx, phiPrime0 = dot(current.fxprime, pk), | |
phi = phi0, phi_old = phi0, | |
phiPrime = phiPrime0, | |
a0 = 0; | |
a = a || 1; | |
function zoom(a_lo, a_high, phi_lo) { | |
for (var iteration = 0; iteration < 16; ++iteration) { | |
a = (a_lo + a_high)/2; | |
weightedSum(next.x, 1.0, current.x, a, pk); | |
phi = next.fx = f(next.x, next.fxprime); | |
phiPrime = dot(next.fxprime, pk); | |
if ((phi > (phi0 + c1 * a * phiPrime0)) || | |
(phi >= phi_lo)) { | |
a_high = a; | |
} else { | |
if (Math.abs(phiPrime) <= -c2 * phiPrime0) { | |
return a; | |
} | |
if (phiPrime * (a_high - a_lo) >=0) { | |
a_high = a_lo; | |
} | |
a_lo = a; | |
phi_lo = phi; | |
} | |
} | |
return 0; | |
} | |
for (var iteration = 0; iteration < 10; ++iteration) { | |
weightedSum(next.x, 1.0, current.x, a, pk); | |
phi = next.fx = f(next.x, next.fxprime); | |
phiPrime = dot(next.fxprime, pk); | |
if ((phi > (phi0 + c1 * a * phiPrime0)) || | |
(iteration && (phi >= phi_old))) { | |
return zoom(a0, a, phi_old); | |
} | |
if (Math.abs(phiPrime) <= -c2 * phiPrime0) { | |
return a; | |
} | |
if (phiPrime >= 0 ) { | |
return zoom(a, a0, phi); | |
} | |
phi_old = phi; | |
a0 = a; | |
a *= 2; | |
} | |
return 0; | |
}; | |
})(venn); | |
(function(venn) { | |
"use strict"; | |
var SMALL = 1e-10; | |
/** Returns the intersection area of a bunch of circles (where each circle | |
is an object having an x,y and radius property) */ | |
venn.intersectionArea = function(circles, stats) { | |
// get all the intersection points of the circles | |
var intersectionPoints = getIntersectionPoints(circles); | |
// filter out points that aren't included in all the circles | |
var innerPoints = intersectionPoints.filter(function (p) { | |
return venn.containedInCircles(p, circles); | |
}); | |
var arcArea = 0, polygonArea = 0, arcs = [], i; | |
// if we have intersection points that are within all the circles, | |
// then figure out the area contained by them | |
if (innerPoints.length > 1) { | |
// sort the points by angle from the center of the polygon, which lets | |
// us just iterate over points to get the edges | |
var center = venn.getCenter(innerPoints); | |
for (i = 0; i < innerPoints.length; ++i ) { | |
var p = innerPoints[i]; | |
p.angle = Math.atan2(p.x - center.x, p.y - center.y); | |
} | |
innerPoints.sort(function(a,b) { return b.angle - a.angle;}); | |
// iterate over all points, get arc between the points | |
// and update the areas | |
var p2 = innerPoints[innerPoints.length - 1]; | |
for (i = 0; i < innerPoints.length; ++i) { | |
var p1 = innerPoints[i]; | |
// polygon area updates easily ... | |
polygonArea += (p2.x + p1.x) * (p1.y - p2.y); | |
// updating the arc area is a little more involved | |
var midPoint = {x : (p1.x + p2.x) / 2, | |
y : (p1.y + p2.y) / 2}, | |
arc = null; | |
for (var j = 0; j < p1.parentIndex.length; ++j) { | |
if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) { | |
// figure out the angle halfway between the two points | |
// on the current circle | |
var circle = circles[p1.parentIndex[j]], | |
a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y), | |
a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y); | |
var angleDiff = (a2 - a1); | |
if (angleDiff < 0) { | |
angleDiff += 2*Math.PI; | |
} | |
// and use that angle to figure out the width of the | |
// arc | |
var a = a2 - angleDiff/2, | |
width = venn.distance(midPoint, { | |
x : circle.x + circle.radius * Math.sin(a), | |
y : circle.y + circle.radius * Math.cos(a) | |
}); | |
// pick the circle whose arc has the smallest width | |
if ((arc === null) || (arc.width > width)) { | |
arc = { circle : circle, | |
width : width, | |
p1 : p1, | |
p2 : p2}; | |
} | |
} | |
} | |
arcs.push(arc); | |
arcArea += venn.circleArea(arc.circle.radius, arc.width); | |
p2 = p1; | |
} | |
} else { | |
// no intersection points, is either disjoint - or is completely | |
// overlapped. figure out which by examining the smallest circle | |
var smallest = circles[0]; | |
for (i = 1; i < circles.length; ++i) { | |
if (circles[i].radius < smallest.radius) { | |
smallest = circles[i]; | |
} | |
} | |
// make sure the smallest circle is completely contained in all | |
// the other circles | |
var disjoint = false; | |
for (i = 0; i < circles.length; ++i) { | |
if (venn.distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) { | |
disjoint = true; | |
break; | |
} | |
} | |
if (disjoint) { | |
arcArea = polygonArea = 0; | |
} else { | |
arcArea = smallest.radius * smallest.radius * Math.PI; | |
arcs.push({circle : smallest, | |
p1: { x: smallest.x, y : smallest.y + smallest.radius}, | |
p2: { x: smallest.x - SMALL, y : smallest.y + smallest.radius}, | |
width : smallest.radius * 2 }); | |
} | |
} | |
polygonArea /= 2; | |
if (stats) { | |
stats.area = arcArea + polygonArea; | |
stats.arcArea = arcArea; | |
stats.polygonArea = polygonArea; | |
stats.arcs = arcs; | |
stats.innerPoints = innerPoints; | |
stats.intersectionPoints = intersectionPoints; | |
} | |
return arcArea + polygonArea; | |
}; | |
/** returns whether a point is contained by all of a list of circles */ | |
venn.containedInCircles = function(point, circles) { | |
for (var i = 0; i < circles.length; ++i) { | |
if (venn.distance(point, circles[i]) > circles[i].radius + SMALL) { | |
return false; | |
} | |
} | |
return true; | |
}; | |
/** Gets all intersection points between a bunch of circles */ | |
function getIntersectionPoints(circles) { | |
var ret = []; | |
for (var i = 0; i < circles.length; ++i) { | |
for (var j = i + 1; j < circles.length; ++j) { | |
var intersect = venn.circleCircleIntersection(circles[i], | |
circles[j]); | |
for (var k = 0; k < intersect.length; ++k) { | |
var p = intersect[k]; | |
p.parentIndex = [i,j]; | |
ret.push(p); | |
} | |
} | |
} | |
return ret; | |
} | |
venn.circleIntegral = function(r, x) { | |
var y = Math.sqrt(r * r - x * x); | |
return x * y + r * r * Math.atan2(x, y); | |
}; | |
/** Returns the area of a circle of radius r - up to width */ | |
venn.circleArea = function(r, width) { | |
return venn.circleIntegral(r, width - r) - venn.circleIntegral(r, -r); | |
}; | |
/** euclidean distance between two points */ | |
venn.distance = function(p1, p2) { | |
return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) + | |
(p1.y - p2.y) * (p1.y - p2.y)); | |
}; | |
/** Returns the overlap area of two circles of radius r1 and r2 - that | |
have their centers separated by distance d. Simpler faster | |
circle intersection for only two circles */ | |
venn.circleOverlap = function(r1, r2, d) { | |
// no overlap | |
if (d >= r1 + r2) { | |
return 0; | |
} | |
// completely overlapped | |
if (d <= Math.abs(r1 - r2)) { | |
return Math.PI * Math.min(r1, r2) * Math.min(r1, r2); | |
} | |
var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d), | |
w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d); | |
return venn.circleArea(r1, w1) + venn.circleArea(r2, w2); | |
}; | |
/** Given two circles (containing a x/y/radius attributes), | |
returns the intersecting points if possible. | |
note: doesn't handle cases where there are infinitely many | |
intersection points (circles are equivalent):, or only one intersection point*/ | |
venn.circleCircleIntersection = function(p1, p2) { | |
var d = venn.distance(p1, p2), | |
r1 = p1.radius, | |
r2 = p2.radius; | |
// if to far away, or self contained - can't be done | |
if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) { | |
return []; | |
} | |
var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d), | |
h = Math.sqrt(r1 * r1 - a * a), | |
x0 = p1.x + a * (p2.x - p1.x) / d, | |
y0 = p1.y + a * (p2.y - p1.y) / d, | |
rx = -(p2.y - p1.y) * (h / d), | |
ry = -(p2.x - p1.x) * (h / d); | |
return [{ x: x0 + rx, y : y0 - ry }, | |
{ x: x0 - rx, y : y0 + ry }]; | |
}; | |
/** Returns the center of a bunch of points */ | |
venn.getCenter = function(points) { | |
var center = { x: 0, y: 0}; | |
for (var i =0; i < points.length; ++i ) { | |
center.x += points[i].x; | |
center.y += points[i].y; | |
} | |
center.x /= points.length; | |
center.y /= points.length; | |
return center; | |
}; | |
})(venn); | |
(function(lib) { | |
if (typeof module === "undefined" || typeof module.exports === "undefined") { | |
window.venn = lib; | |
} else { | |
module.exports = lib; | |
} | |
})(venn); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment