Created
November 22, 2020 10:23
004_license_plate_detection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
class LicensePlateDetector: | |
def __init__(self, pth_weights: str, pth_cfg: str, pth_classes: str): | |
self.net = cv2.dnn.readNet(pth_weights, pth_cfg) | |
self.classes = [] | |
with open(pth_classes, 'r') as f: | |
self.classes = f.read().splitlines() | |
self.font = cv2.FONT_HERSHEY_PLAIN | |
self.color = (255, 0, 0) | |
self.coordinates = None | |
self.img = None | |
self.fig_image = None | |
self.roi_image = None | |
def detect(self, img_path: str): | |
orig = cv2.imread(img_path) | |
self.img = orig | |
img = orig.copy() | |
height, width, _ = img.shape | |
blob = cv2.dnn.blobFromImage(img, 1 / 255, (416, 416), (0, 0, 0), swapRB=True, crop=False) | |
self.net.setInput(blob) | |
output_layer_names = self.net.getUnconnectedOutLayersNames() | |
layer_outputs = self.net.forward(output_layer_names) | |
boxes = [] | |
confidences = [] | |
class_ids = [] | |
for output in layer_outputs: | |
for detection in output: | |
scores = detection[5:] | |
class_id = np.argmax(scores) | |
confidence = scores[class_id] | |
if confidence > 0.2: | |
center_x = int(detection[0] * width) | |
center_y = int(detection[1] * height) | |
w = int(detection[2] * width) | |
h = int(detection[3] * height) | |
x = int(center_x - w / 2) | |
y = int(center_y - h / 2) | |
boxes.append([x, y, w, h]) | |
confidences.append((float(confidence))) | |
class_ids.append(class_id) | |
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.4) | |
if len(indexes) > 0: | |
for i in indexes.flatten(): | |
x, y, w, h = boxes[i] | |
label = str(self.classes[class_ids[i]]) | |
confidence = str(round(confidences[i],2)) | |
cv2.rectangle(img, (x,y), (x + w, y + h), self.color, 15) | |
cv2.putText(img, label + ' ' + confidence, (x, y + 20), self.font, 3, (255, 255, 255), 3) | |
self.fig_image = img | |
self.coordinates = (x, y, w, h) | |
return | |
def crop_plate(self): | |
x, y, w, h = self.coordinates | |
roi = self.img[y:y + h, x:x + w] | |
self.roi_image = roi | |
return |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment