public
Created

Implementation of Ukkonen's algorithm to build a prefix tree in O(n)

  • Download Gist
gistfile1.java
Java
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
import java.util.*;
 
public class ss {
public static int stacktrack;
public char TERMINATORS_RANGE = '\ud800';
public static int count=0;
public static void dfsd(Node c){
if (c.isLeaf()){
//System.out.println("\nbasecase");
//count++;
return;
}
Node a;
System.out.println(c.sons.keySet());
Iterator it = c.sons.entrySet().iterator();
while (it.hasNext()) {
Map.Entry pairs = (Map.Entry)it.next();
a = (Node)pairs.getValue();
for(int i=0;i<stacktrack;i++)System.out.print("\t");
System.out.println(stacktrack+" br>>>>>>> ="+count+"= "+pairs.getKey() + " = " + a.edgeStart + " : " + a.edgeEnd );
stacktrack++;
count++;
dfsd(c.sons.get(pairs.getKey()));
stacktrack--;
for(int i=0;i<stacktrack;i++)System.out.print("\t");
System.out.println(stacktrack+" bt<<<<<<< ="+count+"= "+pairs.getKey() + " = " + a.edgeStart + " : " + a.edgeEnd );
}
}
public static void main(String[] args) {
/*Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
*/
String s = "abbab";
SuffixTree t1 = new SuffixTree(s);
System.out.println(t1.nofnodes());
SuffixTree t2 = new SuffixTree(new String[]{"aab","aac"});
System.out.println(t2.nofnodes());
 
SuffixTree t3 = new SuffixTree();
t3.addString("aab");
t3.addString("aac");
System.out.println(t3.nofnodes());
dfsd(t3.root);
System.out.println(count)
}
}
 
 
/*
Ukkonen's algorithm for linear time construction of suffix trees.
*/
 
class Node {
Node parent, suffixLink;
int edgeStart, edgeEnd, parentDepth;
// The edge that reaches this node contains the substring s[edgeStart, edgeEnd]
TreeMap<Character, Node> sons;
 
public Node(){
parent = suffixLink = null;
edgeStart = edgeEnd = parentDepth = 0;
sons = new TreeMap<Character, Node>();
}
 
// Returns true if there is a path starting at root having length position + 1 that ends
// in the edge that reaches this node.
public boolean inEdge(int position){
return parentDepth <= position && position < depth();
}
 
public int edgeLength(){
return edgeEnd - edgeStart;
}
 
public int depth(){
return parentDepth + edgeLength();
}
 
void link(Node son, int start, int end, String s){
// Links the current node with the son. The edge will have substring s[start, end)
son.parent = this;
son.parentDepth = this.depth();
son.edgeStart = start;
son.edgeEnd = end;
sons.put(s.charAt(start),son);
}
 
public boolean isLeaf(){
return sons.size() == 0;
}
};
 
class SuffixTree {
ArrayList<Node> nodes;
Node root, needSuffix;
int currentNode;
int length;
char TERMINATORS_RANGE = '\ud800';
int termi=0;
String generalized;
 
public SuffixTree(String str) {
nodes = new ArrayList<Node>();
currentNode = 0;
str = str + (char)TERMINATORS_RANGE;
length = str.length();
root = newNode();
build(root, str);
}
 
public SuffixTree(String[] stra) {
nodes = new ArrayList<Node>();
currentNode = 0;
root = newNode();
StringBuilder sb = new StringBuilder();
for (int i = 0; i < stra.length; i++) {
sb.append(stra[i]);
sb.append((char)(TERMINATORS_RANGE + i));
}
generalized = sb.toString();
length = generalized.length();
build(root, generalized);
}
 
public SuffixTree() {
nodes = new ArrayList<Node>();
currentNode = 0;
root = newNode();
}
void addString(String str){
str = str+ (char)(TERMINATORS_RANGE + termi);
termi++;
length = str.length();
build(root, str);
}
int nofnodes() {
return currentNode;
}
Node newNode(){
nodes.add(currentNode,new Node());
currentNode++;
return new Node();
}
 
Node walkDown(Node c, int j, int i, String str) {
int k = j + c.depth();
if (i - j + 1 > 0){
while (!c.inEdge(i - j)){
c = c.sons.get(str.charAt(k));
k += c.edgeLength();
}
}
return c;
}
 
void addSuffixLink(Node current){
if (needSuffix != null){
needSuffix.suffixLink = current;
}
needSuffix = null;
}
 
void build(Node root, String s) {
Node c = newNode();
needSuffix = null;
root.link(c, 0, length, s);
 
// Indicates if at the beginning of the phase we need to follow the suffix link of the current node
//and then walk down the tree using the skip and count trick.
boolean needWalk = true;
 
for (int i=0, j=1; i<length-1; ++i){
char nc = s.charAt(i+1);
while (j <= i + 1){
if (needWalk){
if (c.suffixLink == null && c.parent != null) c = c.parent;
c = (c.suffixLink == null ? root : c.suffixLink);
c = walkDown(c, j, i, s);
}
 
needWalk = true;
// Here c == the highest node below s[j...i] and we will add char s[i+1]
int m = i - j + 1; // Length of the string s[j..i].
if (m == c.depth()){
// String s[j...i] ends exactly at node c (explicit node).
addSuffixLink(c);
if (c.sons.containsKey(nc)){
c = c.sons.get(nc);
needWalk = false;
break;
}else{
Node leaf = newNode();
c.link(leaf, i+1, length, s);
}
}else{
// String s[j...i] ends at some place in the edge that reaches node c.
int where = c.edgeStart + m - c.parentDepth;
// The next character in the path after string s[j...i] is s[where]
if (s.charAt(where) == nc){ //Either rule 3 or rule 1
addSuffixLink(c);
if (!c.isLeaf() || j != c.edgeStart - c.parentDepth){
// Rule 3
needWalk = false;
break;
}
}else{
Node split = newNode();
c.parent.link(split, c.edgeStart, where, s);
split.link(c, where, c.edgeEnd, s);
split.link(newNode(), i+1, length, s);
addSuffixLink(split);
if (split.depth() == 1){
//The suffix link is the root because we remove the only character and end with an empty string.
split.suffixLink = root;
}else{
needSuffix = split;
}
c = split;
}
}
j++;
}
}
}
}

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.