Skip to content

Instantly share code, notes, and snippets.

@birarda
Created April 14, 2014 19:53
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save birarda/10677986 to your computer and use it in GitHub Desktop.
Save birarda/10677986 to your computer and use it in GitHub Desktop.
landscape generation script for High Fidelity
//
// perlin.js
//
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough banksean@gmail.com
var SimplexNoise = function(r) {
if (r == undefined) r = Math;
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
this.p = [];
for (var i=0; i<256; i++) {
this.p[i] = Math.floor(r.random()*256);
}
// To remove the need for index wrapping, double the permutation table length
this.perm = [];
for(var i=0; i<512; i++) {
this.perm[i]=this.p[i & 255];
}
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
this.simplex = [
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
};
SimplexNoise.prototype.dot = function(g, x, y) {
return g[0]*x + g[1]*y;
};
SimplexNoise.prototype.noise = function(xin, yin) {
var n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var F2 = 0.5*(Math.sqrt(3.0)-1.0);
var s = (xin+yin)*F2; // Hairy factor for 2D
var i = Math.floor(xin+s);
var j = Math.floor(yin+s);
var G2 = (3.0-Math.sqrt(3.0))/6.0;
var t = (i+j)*G2;
var X0 = i-t; // Unskew the cell origin back to (x,y) space
var Y0 = j-t;
var x0 = xin-X0; // The x,y distances from the cell origin
var y0 = yin-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255;
var jj = j & 255;
var gi0 = this.perm[ii+this.perm[jj]] % 12;
var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0*x0-y0*y0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1*x1-y1*y1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
}
var t2 = 0.5 - x2*x2-y2*y2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
};
// 3D simplex noise
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
var n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var F3 = 1.0/3.0;
var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
var i = Math.floor(xin+s);
var j = Math.floor(yin+s);
var k = Math.floor(zin+s);
var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
var t = (i+j+k)*G3;
var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
var Y0 = j-t;
var Z0 = k-t;
var x0 = xin-X0; // The x,y,z distances from the cell origin
var y0 = yin-Y0;
var z0 = zin-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
var y2 = y0 - j2 + 2.0*G3;
var z2 = z0 - k2 + 2.0*G3;
var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
var y3 = y0 - 1.0 + 3.0*G3;
var z3 = z0 - 1.0 + 3.0*G3;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
}
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
}
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
}
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
};
// Create a simple ground plane sheet of voxels
var PLANE_SIDE_LENGTH = 8192;
var BASE_BLOCK_SIZE = 64;
var MIN_X = 0;
var MIN_Z = 0;
var z = MIN_Z;
var MAX_X = (PLANE_SIDE_LENGTH + MIN_Z);
var MAX_Z = (PLANE_SIDE_LENGTH + MIN_Z);
var PLANE_MAX_HEIGHT = 250;
function getColorByHeight(height) {
var WATER_LEVEL = .60;
var GREEN_LEVEL = .80;
var BROWN_LEVEL = 1;
var r,g,b;
var noise = 0;
var color = {};
var darkenMultiplier = 0;
var sectionHeight = 0;
if (height < (WATER_LEVEL * PLANE_MAX_HEIGHT)) {
// Water
color.r = 57;
color.g = 88;
color.b = 121;
sectionHeight = (WATER_LEVEL - 0) * PLANE_MAX_HEIGHT;
darkenMultiplier = 0.25 + (0.75 * height / sectionHeight);
noise = 25;
} else if (height < (GREEN_LEVEL * PLANE_MAX_HEIGHT)) {
// Grass
color.r = 38;
color.g = 106;
color.b = 46;
sectionHeight = (GREEN_LEVEL - WATER_LEVEL) * PLANE_MAX_HEIGHT;
darkenMultiplier = 0.25 + (0.75 * (height - (WATER_LEVEL * PLANE_MAX_HEIGHT)) / sectionHeight);
noise = 15;
} else if (height < (BROWN_LEVEL * PLANE_MAX_HEIGHT)) {
// Dirt
color.r = 120;
color.g = 72;
color.b = 0;
sectionHeight = (BROWN_LEVEL - GREEN_LEVEL) * PLANE_MAX_HEIGHT;
darkenMultiplier = 0.25 + (0.75 * (height - (GREEN_LEVEL * PLANE_MAX_HEIGHT)) / sectionHeight);
noise = 25;
} else {
// Snow
color.r = 238;
color.g = 233;
color.b = 233;
sectionHeight = (1 - BROWN_LEVEL) * PLANE_MAX_HEIGHT;
darkenMultiplier = 0.25 + (0.75 * (height - (BROWN_LEVEL * PLANE_MAX_HEIGHT)) / sectionHeight);
noise = 10;
}
var noiseColor = Math.random() * noise;
color.r += noiseColor;
color.g += noiseColor;
color.b += noiseColor;
color.r *= darkenMultiplier;
color.g *= darkenMultiplier;
color.b *= darkenMultiplier;
return color;
}
function SeededRandom(){
var seed = 42;
this.random = function(){
var x = Math.sin(seed++) * 10000;
return x - Math.floor(x);
};
}
var perlin = new SimplexNoise(new SeededRandom());
var PERLIN_BASE_RANGE = 4;
var PERLIN_DENOMINATOR = 16384 / PERLIN_BASE_RANGE;
function getHeight(x, z) {
var scaledX = x / (PERLIN_DENOMINATOR);
var scaledZ = z / (PERLIN_DENOMINATOR);
var basePerlin = perlin.noise(scaledX, scaledZ);
var scaledBasePerlin = (basePerlin + 1) / 2;
var secondPerlin = perlin.noise(10 * scaledX, 5 * scaledZ);
scaledSecondPerlin = (secondPerlin + 1) / 2;
var thirdPerlin = perlin.noise(30 * scaledX, 15 * scaledZ);
scaledThirdPerlin = (thirdPerlin + 1) / 2;
var combinedPerlin = scaledBasePerlin + (0.25 * scaledSecondPerlin) + (0.125 * scaledThirdPerlin);
combinedPerlin /= 1.0 + 0.25 + 0.125;
return combinedPerlin * PLANE_MAX_HEIGHT;
}
var createdVoxels = 0;
function recursivelyAddTopLayersToBase(baseX, baseZ, baseSize, heightPush) {
var blockSize = baseSize / 2;
if (blockSize >= BASE_BLOCK_SIZE / 4) {
for (var x = 0; x < 2; x++) {
for (var z = 0; z < 2; z++) {
// x, z
var blockBaseY = getHeight(baseX + (blockSize * x) + (blockSize / 2), baseZ + (blockSize * z) + (blockSize / 2));
blockBaseY += heightPush;
var blockY = blockBaseY;
var blockColor = getColorByHeight(blockBaseY);
Voxels.setVoxel(baseX + (blockSize * x), blockY, baseZ + (blockSize * z), blockSize, blockColor.r, blockColor.g, blockColor.b);
createdVoxels++;
recursivelyAddTopLayersToBase(baseX + (blockSize * x), baseZ + (blockSize * z), blockSize, heightPush + blockSize);
}
}
}
}
var done = false;
// here I'm creating a function to fire before each data send
function makeBlocks() {
if (!done) {
for (var x = MIN_X; x < MAX_X; x += BASE_BLOCK_SIZE) {
// get the height at the center of the voxel
var baseY = getHeight(x + (BASE_BLOCK_SIZE / 2), z + (BASE_BLOCK_SIZE / 2));
var baseColor = getColorByHeight(baseY);
createdVoxels++;
Voxels.setVoxel(x, baseY, z, BASE_BLOCK_SIZE, baseColor.r, baseColor.g, baseColor.b);
// call our helper to add the top layers to this base block
recursivelyAddTopLayersToBase(x, z, BASE_BLOCK_SIZE, BASE_BLOCK_SIZE);
}
z += BASE_BLOCK_SIZE;
print("z: " + z + " - " + createdVoxels + " voxels\n");
if (z >= MAX_Z) {
done = true;
print("Done building ground. Created " + createdVoxels + " voxels.\n");
// Agent.stop();
}
}
}
// register the call back so it fires before each data send
Script.update.connect(makeBlocks);
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment