View convert_save.py
# Default Optimization is choosen | |
converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
# Convert to TFLite Model | |
tflite_model = converter.convert() | |
# Save Model as tflite format | |
tflite_path = "deeplabv3_mnv2_custom_257.tflite" | |
tflite_model_size = open(tflite_path, 'wb').write(tflite_model) |
View convert_import.py
import os | |
import numpy as np | |
import tensorflow as tf | |
print(tf.__version__) |
View convert_load.py
MODEL_FILE = "frozen_inference_graph_257.pb" | |
# Load the TensorFlow model | |
converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph( | |
graph_def_file = MODEL_FILE, | |
input_arrays = ['sub_2'], # For the Xception model it needs to be `sub_7`, for MobileNet it would be `sub_2` | |
output_arrays = ['ResizeBilinear_2'], | |
input_shapes={'sub_2':[1,257,257,3]} | |
) |
View index.js
const functions = require('firebase-functions'); | |
const admin = require('firebase-admin'); | |
// var serviceAccount = require("/home/bmabir/dev/tran-dao-8e837f43806d.json"); | |
admin.initializeApp({ | |
credential: admin.credential.applicationDefault() | |
}); | |
const db = admin.firestore(); | |
// // Create and Deploy Your First Cloud Functions | |
// // https://firebase.google.com/docs/functions/write-firebase-functions | |
// |
View convert.py
import tensorflow as tf | |
import numpy as np | |
import mrcnn.model as modellib # https://github.com/matterport/Mask_RCNN/ | |
from mrcnn.config import Config | |
import keras.backend as keras | |
PATH_TO_SAVE_FROZEN_PB ="./" | |
FROZEN_NAME ="saved_model.pb" |
View vae_model.py
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import abc | |
import pytorch_ssim | |
import torchvision.models as models | |
from torch.autograd import Variable | |
class AbstractAutoEncoder(nn.Module): |
View hikVisionApi_test.py
from hikvisionapi import Client | |
import cv2 | |
import numpy as np | |
cam = Client('http://192.168.1.2','admin','admin123',timeout=1) | |
cap=cv2.VideoCapture('rtsp://admin:admin123@192.168.1.2:554/main/av_stream') | |
#response = cam.System.deviceInfo(method='get') | |
#print(response) | |
#motion_detection_info = cam.System.Video.inputs.channels[1].motionDetection(method='get') |
View webcam_capture.py
import subprocess as sp | |
import time | |
while(True): | |
sp.call('ffmpeg -f v4l2 -framerate 25 -t 4 -video_size 640x480 -i /dev/video0 ./webcam_output.mp4 -y',shell=True) | |
print('Video Captured') | |
time.sleep(1) |
View main.dart
import 'dart:io' as Io; | |
import 'package:image/image.dart'; | |
void main(){ | |
//Read an image from file | |
//You can also use other file format like jpeg, webp,TIFF, PSD, GIF | |
var imageFile = new Io.File('test.png').readAsBytesSync(); | |
//decodeImage will identify the format of the image and | |
// decode the image accordingly | |
Image image = decodeImage(imageFile); |