Created
March 15, 2019 18:49
-
-
Save bobchennan/a865b153c6835a3a6a5c628213766150 to your computer and use it in GitHub Desktop.
GELS with deriviative in pytorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Function | |
class GELS(Function): | |
""" Efficient implementation of gels from | |
Nanxin Chen | |
bobchennan@gmail.com | |
""" | |
@staticmethod | |
def forward(ctx, A, b): | |
# A: (..., M, N) | |
# b: (..., M, K) | |
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/linalg_ops.py#L267 | |
u = torch.cholesky(torch.matmul(A.transpose(-1, -2), A), upper=True) | |
ret = torch.potrs(torch.matmul(A.transpose(-1, -2), b), u) | |
ctx.save_for_backward(u, ret, A, b) | |
return ret | |
@staticmethod | |
def backward(ctx, grad_output): | |
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/linalg_grad.py#L223 | |
chol, x, a, b = ctx.saved_tensors | |
z = torch.potrs(grad_output, chol) | |
xzt = torch.matmul(x, z.transpose(-1,-2)) | |
zx_sym = xzt + xzt.transpose(-1, -2) | |
grad_A = - torch.matmul(a, zx_sym) + torch.matmul(b, z.transpose(-1, -2)) | |
grad_b = torch.matmul(a, z) | |
return grad_A, grad_b | |
if __name__ == "__main__": | |
A=torch.nn.Parameter(torch.randn(1, 10, 4, dtype=torch.double)) | |
b=torch.nn.Parameter(torch.randn(1, 10, 1, dtype=torch.double)) | |
# forward test | |
print(GELS.apply(A,b)) | |
print(torch.gels(b.squeeze(0),A.squeeze(0))[0]) | |
import numpy as np | |
print(np.linalg.lstsq(A.data.numpy()[0], b.data.numpy()[0])) | |
# backward test | |
print(torch.autograd.gradcheck(GELS.apply, [A, b])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
New pytorch version warns of deprecation for potrs; you can replace line 15 with
and line 23 with