Created
February 7, 2012 14:14
-
-
Save boj/1759876 to your computer and use it in GitHub Desktop.
Stefan Gustavson's "Simplex noise demystified" in C# + Unity3d Mathf methods.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using UnityEngine; | |
using System.Collections; | |
// copied and modified from http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | |
public class SimplexNoise { // Simplex noise in 2D, 3D and 4D | |
private static int[][] grad3 = new int[][] { | |
new int[] {1,1,0}, new int[] {-1,1,0}, new int[] {1,-1,0}, new int[] {-1,-1,0}, | |
new int[] {1,0,1}, new int[] {-1,0,1}, new int[] {1,0,-1}, new int[] {-1,0,-1}, | |
new int[] {0,1,1}, new int[] {0,-1,1}, new int[] {0,1,-1}, new int[] {0,-1,-1}}; | |
private static int[][] grad4 = new int[][] { | |
new int[] {0,1,1,1}, new int[] {0,1,1,-1}, new int[] {0,1,-1,1}, new int[] {0,1,-1,-1}, | |
new int[] {0,-1,1,1}, new int[] {0,-1,1,-1}, new int[] {0,-1,-1,1}, new int[] {0,-1,-1,-1}, | |
new int[] {1,0,1,1}, new int[] {1,0,1,-1}, new int[] {1,0,-1,1}, new int[] {1,0,-1,-1}, | |
new int[] {-1,0,1,1}, new int[] {-1,0,1,-1}, new int[] {-1,0,-1,1}, new int[] {-1,0,-1,-1}, | |
new int[] {1,1,0,1}, new int[] {1,1,0,-1}, new int[] {1,-1,0,1}, new int[] {1,-1,0,-1}, | |
new int[] {-1,1,0,1}, new int[] {-1,1,0,-1}, new int[] {-1,-1,0,1}, new int[] {-1,-1,0,-1}, | |
new int[] {1,1,1,0}, new int[] {1,1,-1,0}, new int[] {1,-1,1,0}, new int[] {1,-1,-1,0}, | |
new int[] {-1,1,1,0}, new int[] {-1,1,-1,0}, new int[] {-1,-1,1,0}, new int[] {-1,-1,-1,0}}; | |
private static int[] p = {151,160,137,91,90,15, | |
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, | |
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, | |
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, | |
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, | |
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, | |
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, | |
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, | |
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, | |
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, | |
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, | |
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, | |
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; | |
// To remove the need for index wrapping, double the permutation table length | |
private static int[] perm = new int[512]; | |
static SimplexNoise() { for(int i=0; i<512; i++) perm[i]=p[i & 255]; } // moved to constructor | |
// A lookup table to traverse the simplex around a given point in 4D. | |
// Details can be found where this table is used, in the 4D noise method. | |
private static int[][] simplex = new int[][] { | |
new int[] {0,1,2,3}, new int[] {0,1,3,2}, new int[] {0,0,0,0}, new int[] {0,2,3,1}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {1,2,3,0}, | |
new int[] {0,2,1,3}, new int[] {0,0,0,0}, new int[] {0,3,1,2}, new int[] {0,3,2,1}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {1,3,2,0}, | |
new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, | |
new int[] {1,2,0,3}, new int[] {0,0,0,0}, new int[] {1,3,0,2}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {2,3,0,1}, new int[] {2,3,1,0}, | |
new int[] {1,0,2,3}, new int[] {1,0,3,2}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {2,0,3,1}, new int[] {0,0,0,0}, new int[] {2,1,3,0}, | |
new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, | |
new int[] {2,0,1,3}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {3,0,1,2}, new int[] {3,0,2,1}, new int[] {0,0,0,0}, new int[] {3,1,2,0}, | |
new int[] {2,1,0,3}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {0,0,0,0}, new int[] {3,1,0,2}, new int[] {0,0,0,0}, new int[] {3,2,0,1}, new int[] {3,2,1,0}}; | |
// This method is a *lot* faster than using (int)Mathf.floor(x) | |
private static int fastfloor(double x) { | |
return x>0 ? (int)x : (int)x-1; | |
} | |
private static double dot(int[] g, double x, double y) { | |
return g[0]*x + g[1]*y; } | |
private static double dot(int[] g, double x, double y, double z) { | |
return g[0]*x + g[1]*y + g[2]*z; } | |
private static double dot(int[] g, double x, double y, double z, double w) { | |
return g[0]*x + g[1]*y + g[2]*z + g[3]*w; } // 2D simplex noise | |
public static double noise(double xin, double yin) { | |
double n0, n1, n2; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
double F2 = 0.5*(Mathf.Sqrt(3.0f)-1.0); | |
double s = (xin+yin)*F2; // Hairy factor for 2D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
double G2 = (3.0-Mathf.Sqrt(3.0f))/6.0; | |
double t = (i+j)*G2; | |
double X0 = i-t; // Unskew the cell origin back to (x,y) space | |
double Y0 = j-t; | |
double x0 = xin-X0; // The x,y distances from the cell origin | |
double y0 = yin-Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-Sqrt(3))/6 | |
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
double y1 = y0 - j1 + G2; | |
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
double y2 = y0 - 1.0 + 2.0 * G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int gi0 = perm[ii+perm[jj]] % 12; | |
int gi1 = perm[ii+i1+perm[jj+j1]] % 12; | |
int gi2 = perm[ii+1+perm[jj+1]] % 12; | |
// Calculate the contribution from the three corners | |
double t0 = 0.5 - x0*x0-y0*y0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient | |
} | |
double t1 = 0.5 - x1*x1-y1*y1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1); | |
} double t2 = 0.5 - x2*x2-y2*y2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70.0 * (n0 + n1 + n2); | |
} | |
// 3D simplex noise | |
public static double noise(double xin, double yin, double zin) { | |
double n0, n1, n2, n3; // Noise contributions from the four corners | |
// Skew the input space to determine which simplex cell we're in | |
double F3 = 1.0/3.0; | |
double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D | |
int i = fastfloor(xin+s); | |
int j = fastfloor(yin+s); | |
int k = fastfloor(zin+s); | |
double G3 = 1.0/6.0; // Very nice and simple unskew factor, too | |
double t = (i+j+k)*G3; | |
double X0 = i-t; // Unskew the cell origin back to (x,y,z) space | |
double Y0 = j-t; | |
double Z0 = k-t; | |
double x0 = xin-X0; // The x,y,z distances from the cell origin | |
double y0 = yin-Y0; | |
double z0 = zin-Z0; | |
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
// Determine which simplex we are in. | |
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
if(x0>=y0) { | |
if(y0>=z0) | |
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order | |
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order | |
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order | |
} | |
else { // x0<y0 | |
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order | |
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order | |
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order | |
} | |
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
// c = 1/6. | |
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
double y1 = y0 - j1 + G3; | |
double z1 = z0 - k1 + G3; | |
double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords | |
double y2 = y0 - j2 + 2.0*G3; | |
double z2 = z0 - k2 + 2.0*G3; | |
double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords | |
double y3 = y0 - 1.0 + 3.0*G3; | |
double z3 = z0 - 1.0 + 3.0*G3; | |
// Work out the hashed gradient indices of the four simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int gi0 = perm[ii+perm[jj+perm[kk]]] % 12; | |
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12; | |
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12; | |
int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12; | |
// Calculate the contribution from the four corners | |
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); | |
} | |
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); | |
} | |
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); | |
} | |
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to stay just inside [-1,1] | |
return 32.0*(n0 + n1 + n2 + n3); | |
} // 4D simplex noise | |
double noise(double x, double y, double z, double w) { | |
// The skewing and unskewing factors are hairy again for the 4D case | |
double F4 = (Mathf.Sqrt(5.0f)-1.0)/4.0; | |
double G4 = (5.0-Mathf.Sqrt(5.0f))/20.0; | |
double n0, n1, n2, n3, n4; // Noise contributions from the five corners | |
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in | |
double s = (x + y + z + w) * F4; // Factor for 4D skewing | |
int i = fastfloor(x + s); | |
int j = fastfloor(y + s); | |
int k = fastfloor(z + s); | |
int l = fastfloor(w + s); | |
double t = (i + j + k + l) * G4; // Factor for 4D unskewing | |
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space | |
double Y0 = j - t; | |
double Z0 = k - t; | |
double W0 = l - t; | |
double x0 = x - X0; // The x,y,z,w distances from the cell origin | |
double y0 = y - Y0; | |
double z0 = z - Z0; | |
double w0 = w - W0; | |
// For the 4D case, the simplex is a 4D shape I won't even try to describe. | |
// To find out which of the 24 possible simplices we're in, we need to | |
// determine the magnitude ordering of x0, y0, z0 and w0. | |
// The method below is a good way of finding the ordering of x,y,z,w and | |
// then find the correct traversal order for the simplex we’re in. | |
// First, six pair-wise comparisons are performed between each possible pair | |
// of the four coordinates, and the results are used to add up binary bits | |
// for an integer index. | |
int c1 = (x0 > y0) ? 32 : 0; | |
int c2 = (x0 > z0) ? 16 : 0; | |
int c3 = (y0 > z0) ? 8 : 0; | |
int c4 = (x0 > w0) ? 4 : 0; | |
int c5 = (y0 > w0) ? 2 : 0; | |
int c6 = (z0 > w0) ? 1 : 0; | |
int c = c1 + c2 + c3 + c4 + c5 + c6; | |
int i1, j1, k1, l1; // The integer offsets for the second simplex corner | |
int i2, j2, k2, l2; // The integer offsets for the third simplex corner | |
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner | |
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. | |
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w | |
// impossible. Only the 24 indices which have non-zero entries make any sense. | |
// We use a thresholding to set the coordinates in turn from the largest magnitude. | |
// The number 3 in the "simplex" array is at the position of the largest coordinate. | |
i1 = simplex[c][0]>=3 ? 1 : 0; | |
j1 = simplex[c][1]>=3 ? 1 : 0; | |
k1 = simplex[c][2]>=3 ? 1 : 0; | |
l1 = simplex[c][3]>=3 ? 1 : 0; | |
// The number 2 in the "simplex" array is at the second largest coordinate. | |
i2 = simplex[c][0]>=2 ? 1 : 0; | |
j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0; | |
l2 = simplex[c][3]>=2 ? 1 : 0; | |
// The number 1 in the "simplex" array is at the second smallest coordinate. | |
i3 = simplex[c][0]>=1 ? 1 : 0; | |
j3 = simplex[c][1]>=1 ? 1 : 0; | |
k3 = simplex[c][2]>=1 ? 1 : 0; | |
l3 = simplex[c][3]>=1 ? 1 : 0; | |
// The fifth corner has all coordinate offsets = 1, so no need to look that up. | |
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords | |
double y1 = y0 - j1 + G4; | |
double z1 = z0 - k1 + G4; | |
double w1 = w0 - l1 + G4; | |
double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords | |
double y2 = y0 - j2 + 2.0*G4; | |
double z2 = z0 - k2 + 2.0*G4; | |
double w2 = w0 - l2 + 2.0*G4; | |
double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords | |
double y3 = y0 - j3 + 3.0*G4; | |
double z3 = z0 - k3 + 3.0*G4; | |
double w3 = w0 - l3 + 3.0*G4; | |
double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords | |
double y4 = y0 - 1.0 + 4.0*G4; | |
double z4 = z0 - 1.0 + 4.0*G4; | |
double w4 = w0 - 1.0 + 4.0*G4; | |
// Work out the hashed gradient indices of the five simplex corners | |
int ii = i & 255; | |
int jj = j & 255; | |
int kk = k & 255; | |
int ll = l & 255; | |
int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; | |
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; | |
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; | |
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; | |
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; | |
// Calculate the contribution from the five corners | |
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); | |
} | |
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); | |
} | |
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); | |
} double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); | |
} | |
double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4; | |
if(t4<0) n4 = 0.0; | |
else { | |
t4 *= t4; | |
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); | |
} | |
// Sum up and scale the result to cover the range [-1,1] | |
return 27.0 * (n0 + n1 + n2 + n3 + n4); | |
} | |
} |
Returning zero for whole number inputs is not necessarily a bug.
(3, 0, 0) -> 0.0
(3, 1, 2) -> 0.0
The noise function is typically called with fractional inputs. Results from a version written in Elixir.
(0/3, 0, 0) -> 0.0
(1/3, 0, 0) -> 0.25921480465376207
(2/3, 0, 0) -> 2.0322105370121734e-4
(3/3, 0, 0) -> -0.3215020576131685
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have tried using this and I am getting zeros when x and y are opposite values. (0,0) (1,-1) (2, -2) (-3,3) (-5,-5).
I have no idea how to debug this. I am a beginner and just Googled for Simplex Noise.
Have you noticed this and corrected this code?