Last active
June 17, 2016 20:54
-
-
Save botev/d86bf210f0b821d291d6c732d08244b5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Created by alex on 17/06/16. | |
// | |
#include "arrayfire.h" | |
#include "iomanip" | |
class BinaryCrossEntropy{ | |
public: | |
inline | |
af::array func(af::array prediction, af::array targets){ | |
// r1 = softplus(-prediction) | |
// r2 = softplus(prediction) | |
af::array r1 = af::select((-prediction) >= 50.000000, (-prediction), af::log1p(af::exp((-prediction)))); | |
af::array r2 = af::select(prediction >= 50.000000, prediction, af::log1p(af::exp(prediction))); | |
return af::sum(af::flat(targets * r1 + (1.0 - targets) * r2) / targets.dims(1)); | |
} | |
inline | |
af::array derivative(af::array prediction, af::array targets){ | |
return (1.0 / (1.0 + af::exp((-prediction))) - targets) / targets.dims(1); | |
} | |
inline | |
af::array diag_hess(af::array prediction, af::array targets){ | |
af::array sigm = 1.0 / (1.0 + af::exp((-prediction))); | |
return sigm * (1.0 - sigm) / targets.dims(1); | |
} | |
}; | |
void check_grad_double(double eps) { | |
BinaryCrossEntropy b = BinaryCrossEntropy(); | |
af::array p = af::randn(20, 30, f64); | |
af::array t = af::randu(20, 30, f64); | |
auto dE = b.derivative(p, t); | |
af::array loss; | |
std::cout << "Numerical computation" << std::endl; | |
for(auto j=0;j<20; ++j){ | |
for(auto k=0;k<30; ++k){ | |
double value = p(j, k).host<double>()[0]; | |
p(j, k) = value + eps; | |
loss = b.func(p, t); | |
double loss_plus = loss.host<double>()[0]; | |
p(j, k) = value - eps; | |
loss = b.func(p, t); | |
double loss_minus = loss.host<double>()[0]; | |
p(j, k) = value; | |
double diff = (loss_plus - loss_minus) / (2 * eps); | |
std::cout << std::fixed << std::setprecision(10) << diff << " - " << dE(j, k).host<double>()[0] << std::endl; | |
} | |
} | |
} | |
void check_grad_float(double eps) { | |
BinaryCrossEntropy b = BinaryCrossEntropy(); | |
af::array p = af::randn(20, 30); | |
af::array t = af::randu(20, 30); | |
auto dE = b.derivative(p, t); | |
af::array loss; | |
std::cout << "Numerical computation" << std::endl; | |
for(auto j=0;j<20; ++j){ | |
for(auto k=0;k<30; ++k){ | |
float value = p(j, k).host<float>()[0]; | |
p(j, k) = value + eps; | |
loss = b.func(p, t); | |
double loss_plus = loss.host<float>()[0]; | |
p(j, k) = value - eps; | |
loss = b.func(p, t); | |
double loss_minus = loss.host<float>()[0]; | |
p(j, k) = value; | |
double diff = (loss_plus - loss_minus) / (2 * eps); | |
std::cout << std::fixed << std::setprecision(10) << diff << " - " << dE(j, k).host<float>()[0] << std::endl; | |
} | |
} | |
} | |
int main(){ | |
check_grad_double(1e-5); | |
check_grad_float(1e-5); | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment