Last active
July 29, 2023 20:00
-
-
Save breadthe/e0fda9f766c691a2cf4533f1da65560e to your computer and use it in GitHub Desktop.
Save image generation parameters into textfile along with the generated image + disable safety check
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse, os, sys, glob | |
import cv2 | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from imwatermark import WatermarkEncoder | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import contextmanager, nullcontext | |
import re | |
sys.path.append(os.path.join(os.path.dirname(__file__), "..")) | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
def get_device(): | |
if(torch.cuda.is_available()): | |
return 'cuda' | |
elif(torch.backends.mps.is_available()): | |
return 'mps' | |
else: | |
return 'cpu' | |
# from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from transformers import AutoFeatureExtractor | |
# load safety model | |
# safety_model_id = "CompVis/stable-diffusion-safety-checker" | |
# safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) | |
# safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.to(get_device()) | |
model.eval() | |
return model | |
def put_watermark(img, wm_encoder=None): | |
if wm_encoder is not None: | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
img = wm_encoder.encode(img, 'dwtDct') | |
img = Image.fromarray(img[:, :, ::-1]) | |
return img | |
def load_replacement(x): | |
try: | |
hwc = x.shape | |
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) | |
y = (np.array(y)/255.0).astype(x.dtype) | |
assert y.shape == x.shape | |
return y | |
except Exception: | |
return x | |
def check_safety(x_image): | |
# safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") | |
# x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) | |
# assert x_checked_image.shape[0] == len(has_nsfw_concept) | |
# for i in range(len(has_nsfw_concept)): | |
# if has_nsfw_concept[i]: | |
# x_checked_image[i] = load_replacement(x_checked_image[i]) | |
# return x_checked_image, has_nsfw_concept | |
return x_image, False | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a painting of a virus monster playing guitar", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--skip_grid", | |
action='store_true', | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--skip_save", | |
action='store_true', | |
help="do not save individual samples. For speed measurements.", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--laion400m", | |
action='store_true', | |
help="uses the LAION400M model", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action='store_true', | |
help="if enabled, uses the same starting code across samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=1, | |
help="how many samples to produce for each given prompt. A.k.a. batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=7.5, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/stable-diffusion/v1-inference.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
default="models/ldm/stable-diffusion-v1/model.ckpt", | |
help="path to checkpoint of model", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
opt = parser.parse_args() | |
if opt.laion400m: | |
print("Falling back to LAION 400M model...") | |
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" | |
opt.ckpt = "models/ldm/text2img-large/model.ckpt" | |
opt.outdir = "outputs/txt2img-samples-laion400m" | |
seed_everything(opt.seed) | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.ckpt}") | |
device = torch.device(get_device()) | |
model = model.to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "StableDiffusionV1" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
batch_size = opt.n_samples | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
prompt = opt.prompt | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
data = list(chunk(data, batch_size)) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
grid_count = len(os.listdir(outpath)) - 1 | |
start_code = None | |
if opt.fixed_code: | |
start_code = torch.randn( | |
[opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device="cpu" | |
).to(torch.device(device)) | |
precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
if device.type == 'mps': | |
precision_scope = nullcontext # have to use f32 on mps | |
with torch.no_grad(): | |
with precision_scope(device.type): | |
with model.ema_scope(): | |
tic = time.time() | |
all_samples = list() | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
uc = None | |
if opt.scale != 1.0: | |
uc = model.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = model.get_learned_conditioning(prompts) | |
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() | |
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim) | |
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) | |
if not opt.skip_save: | |
for x_sample in x_checked_image_torch: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
img = Image.fromarray(x_sample.astype(np.uint8)) | |
img = put_watermark(img, wm_encoder) | |
# ================ save params to txt file ================ | |
# @see https://github.com/CompVis/stable-diffusion/issues/121 | |
outFileName = opt.prompt | |
outFileName = re.sub(', ' , '-', outFileName) | |
outFileName = re.sub(',' , '-', outFileName) | |
outFileName = re.sub(' ' , ' ', outFileName) | |
outFileName = re.sub(' ' , '_', outFileName) | |
outFileName = re.sub('__' , '_', outFileName) | |
outFileName = re.sub('\'' , '', outFileName) | |
outFileName = re.sub('\/' , '', outFileName) | |
outFileName = outFileName[0:240] | |
outFileName += "-" + f"{base_count:05}.png" | |
# img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
img.save(os.path.join(sample_path, outFileName)) | |
with open(sample_path + "/" + outFileName + ".txt", 'w') as outFileParams: | |
outFileParams.write("Prompt: " + str(opt.prompt) + "\n") | |
outFileParams.write("Output Directory: " + str(opt.outdir) + "\n") | |
outFileParams.write("Number of Sampling Steps: " + str(opt.ddim_steps) + "\n") | |
outFileParams.write("Deterministic ETA Sampling: " + str(opt.ddim_eta) + "\n") | |
outFileParams.write("Iterations: " + str(opt.n_iter) + "\n") | |
outFileParams.write("Channels: " + str(opt.C) + "\n") | |
outFileParams.write("Factor: " + str(opt.f) + "\n") | |
outFileParams.write("Number of Samples: " + str(opt.n_samples) + "\n") | |
outFileParams.write("Number of Rows: " + str(opt.n_rows) + "\n") | |
outFileParams.write("Scale: " + str(opt.scale) + "\n") | |
outFileParams.write("Config: " + str(opt.config) + "\n") | |
outFileParams.write("Model: " + str(opt.ckpt) + "\n") | |
outFileParams.write("Seed: " + str(opt.seed) + "\n") | |
outFileParams.write("Height: " + str(opt.H) + "\n") | |
outFileParams.write("Width: " + str(opt.W) + "\n") | |
if opt.laion400m: | |
outFileParams.write("laion400m: " + "True" + "\n") | |
else: | |
outFileParams.write("laion400m: " + "False" + "\n") | |
if opt.plms: | |
outFileParams.write("PLMS: " + "True" + "\n") | |
else: | |
outFileParams.write("PLMS: " + "False" + "\n") | |
if opt.skip_grid: | |
outFileParams.write("Skip Grid: " + "--skip_grid Enabled\n") | |
else: | |
outFileParams.write("Skip Grid: " + "--skip_grid Disabled\n") | |
if opt.skip_save: | |
outFileParams.write("Skip Save: " + "--skip_save Enabled\n") | |
else: | |
outFileParams.write("Skip Save: " + "--skip_save Disabled\n") | |
if opt.from_file: | |
outFileParams.write("Prompt File: " + str(opt.from_file) + "\n") | |
if opt.fixed_code: | |
outFileParams.write("Fixed Input: " + str(opt.fixed_code) + "\n") | |
if opt.precision: | |
outFileParams.write("Precision Scope: " + str(opt.precision) + "\n") | |
# ================ ENDsave params to txt file ================ | |
base_count += 1 | |
if not opt.skip_grid: | |
all_samples.append(x_checked_image_torch) | |
if not opt.skip_grid: | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=n_rows) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
img = Image.fromarray(grid.astype(np.uint8)) | |
img = put_watermark(img, wm_encoder) | |
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
grid_count += 1 | |
toc = time.time() | |
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" | |
f" \nEnjoy.") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment