Skip to content

Instantly share code, notes, and snippets.

@brendanzab
Last active February 10, 2021 12:15
Show Gist options
  • Save brendanzab/0bfdfc51ad9ab9ea128b78b92e30b815 to your computer and use it in GitHub Desktop.
Save brendanzab/0bfdfc51ad9ab9ea128b78b92e30b815 to your computer and use it in GitHub Desktop.
Total and partial maps in Lean 4 (inspired by Software Foundations)
/-
Total and partial maps
This is inspired by [the relevant chapter in Software Foundations]. Unlike
Software Foundations, these maps are also parameterised over a `Key`
type, which must supply an implementation of `DecidableEq`.
[Software Foundations]: https://softwarefoundations.cis.upenn.edu/lf-current/Maps.html
-/
namespace Maps
/-
Total maps
-/
structure TotalMap (Key : Type) [keyEq : DecidableEq Key] (Entry : Type) where
get : Key → Entry
namespace TotalMap
variables {Key : Type} [keyEq : DecidableEq Key] {Entry : Type}
/- Operations -/
/- Update an entry in the map -/
@[reducible]
def update (map : TotalMap Key Entry) (key : Key) (entry : Entry) : TotalMap Key Entry := {
get := fun key' =>
if key = key' then entry else map.get key'
}
/- Construct an empty map -/
@[reducible]
def empty (default : Entry) : TotalMap Key Entry := {
get := fun key => default
}
/- Examples -/
private def exampleTotalMap :=
empty (default := false)
|> update (key := 1) (entry := false)
|> update (key := 3) (entry := true)
example : exampleTotalMap.get 0 = false := rfl
example : exampleTotalMap.get 1 = false := rfl
example : exampleTotalMap.get 2 = false := rfl
example : exampleTotalMap.get 3 = true := rfl
/- Properties -/
/- Eta-conversion -/
theorem eta : ∀ (map : TotalMap Key Entry), map = { get := map.get }
| { get := get } => rfl
/- Congruence of `get` -/
private theorem congrGet {map₁ map₂ : TotalMap Key Entry} (h : map₁.get = map₂.get) :
map₁ = map₂
:= by
rw [eta map₁, eta map₂]
apply congrArg
exact h
/- The empty map returns its default element for all keys -/
theorem getEmpty (key : Key) (default : Entry) :
(empty (default := default)).get key = default
:=
rfl
/- If we update a `map` at a `key` with a new `entry` and then look up `key`
in the map resulting from the update, we get back `entry`: -/
theorem getUpdateEq (map : TotalMap Key Entry) key entry :
(map.update key entry).get key = entry
:=
ifPos (c := key = key) rfl
/- If we update a `map` at `key₁` and then look up a different `key₂` in
the resulting map, we get the same result that `map` would have given -/
theorem getUpdateNeq (map : TotalMap Key Entry) key₁ key₂ entry (h : key₁ ≠ key₂) :
(map.update key₁ entry).get key₂ = map.get key₂
:=
ifNeg (c := key₁ = key₂) (Ne.intro h)
/- If we update a `map` at `key` with `entry₁` and then update again with
the same `key` and `entry₂`, the resulting map behaves the same (ie.
gives the same result when applied to any key) as the simpler map
obtained by performing just the second update on `map`. -/
theorem updateShadow (map : TotalMap Key Entry) entry₁ entry₂ key :
(map.update key entry₁).update key entry₂ = map.update key entry₂
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key'
match decEq key key' with
| isTrue h => repeat rw [ifPos h]
| isFalse h => repeat rw [ifNeg h]
/- If we update a `map` to assign `key` the same entry as it already has in
`map`, then the result is equal to `map` -/
theorem updateSame (map : TotalMap Key Entry) key :
map.update key (map.get key) = map
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key'
match decEq key key' with
| isTrue h => rw [ifPos h]; rw [h]
| isFalse h => rw [ifNeg h]
/- If we update a `map` at two distinct keys, it doesn't matter in which
order we do the updates. -/
theorem updatePermute entry₁ entry₂ key₁ key₂ (map : TotalMap Key Entry) (h : key₂ ≠ key₁) :
(map.update key₂ entry₂).update key₁ entry₁
= (map.update key₁ entry₁).update key₂ entry₂
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key
match decEq key₁ key, decEq key₂ key with
| isTrue q, isTrue u =>
rw [ifPos q, ifPos u]
exact absurd (Eq.trans u q.symm) h
| isTrue q, isFalse u => repeat rw [ifPos q]; repeat rw [ifNeg u]
| isFalse q, isTrue u => repeat rw [ifNeg q]; repeat rw [ifPos u]
| isFalse q, isFalse u => repeat rw [ifNeg q]; repeat rw [ifNeg u]
end TotalMap
/-
Partial Maps
-/
structure PartialMap (Key : Type) [keyEq: DecidableEq Key] (Entry : Type) where
get : Key → Option Entry
-- TODO: Lean 4's positivity checker can't see through definitions yet :(
-- abbrev PartialMap (Key : Type) [keyEq: DecidableEq Key] (Entry : Type) :=
-- TotalMap Key (Option Entry)
namespace PartialMap
variables {Key : Type} [keyEq: DecidableEq Key] {Entry : Type}
/- Operations -/
/- Update an entry in the map -/
@[reducible]
def update (map : PartialMap Key Entry) (key : Key) (entry : Entry) : PartialMap Key Entry := {
get := fun key' =>
if key = key' then some entry else map.get key'
}
/- Construct an empty map -/
@[reducible]
def empty : PartialMap Key Entry := {
get := fun key => none
}
/- Examples -/
private def exampleMap :=
empty
|> update (key := "Church") (entry := false)
|> update (key := "Turing") (entry := true)
example : exampleMap.get "Church" = false := rfl
example : exampleMap.get "Turing" = true := rfl
example : exampleMap.get "Gödel" = none := rfl
/- Properties -/
/- Eta-conversion -/
theorem eta : ∀ (map : PartialMap Key Entry), map = { get := map.get }
| { get := get } => rfl
/- Congruence of `get` -/
private theorem congrGet {map₁ map₂ : PartialMap Key Entry} (h : map₁.get = map₂.get) :
map₁ = map₂
:= by
rw [eta map₁, eta map₂]
apply congrArg
exact h
/- The empty map returns its default element for all keys -/
theorem getEmpty (key : Key) :
(empty (Entry := Entry)).get key = none
:=
rfl
/- If we update a `map` at a `key` with a new `entry` and then look up `key`
in the map resulting from the update, we get back `entry`: -/
theorem getUpdateEq (map : PartialMap Key Entry) key entry :
(map.update key entry).get key = entry
:=
ifPos (c := key = key) rfl
/- If we update a `map` at `key₁` and then look up a different `key₂` in
the resulting map, we get the same result that `map` would have given -/
theorem getUpdateNeq (map : PartialMap Key Entry) key₁ key₂ entry (h : key₁ ≠ key₂) :
(map.update key₁ entry).get key₂ = map.get key₂
:=
ifNeg (c := key₁ = key₂) (Ne.intro h)
/- If we update a `map` at `key` with `entry₁` and then update again with
the same `key` and `entry₂`, the resulting map behaves the same (ie.
gives the same result when applied to any key) as the simpler map
obtained by performing just the second update on `map`. -/
theorem updateShadow (map : PartialMap Key Entry) entry₁ entry₂ key :
(map.update key entry₁).update key entry₂ = map.update key entry₂
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key'
match decEq key key' with
| isTrue h => repeat rw [ifPos h]
| isFalse h => repeat rw [ifNeg h]
/- If we update a `map` to assign `key` the same entry as it already has in
`map`, then the result is equal to `map` -/
theorem updateSame (map : PartialMap Key Entry) key entry (h : map.get key = some entry) :
map.update key entry = map
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key'
match decEq key key' with
| isTrue q =>
rw [ifPos q, q.symm]
exact h.symm
| isFalse q => rw [ifNeg q]
/- If we update a `map` at two distinct keys, it doesn't matter in which
order we do the updates. -/
theorem updatePermute entry₁ entry₂ key₁ key₂ (map : PartialMap Key Entry) (h : key₂ ≠ key₁) :
(map.update key₂ entry₂).update key₁ entry₁
= (map.update key₁ entry₁).update key₂ entry₂
:= by
apply congrGet
simp -- FIXME: avoid `simp`?
funext key
match decEq key₁ key, decEq key₂ key with
| isTrue q, isTrue u =>
rw [ifPos q, ifPos u]
exact absurd (Eq.trans u q.symm) h
| isTrue q, isFalse u => repeat rw [ifPos q]; repeat rw [ifNeg u]
| isFalse q, isTrue u => repeat rw [ifNeg q]; repeat rw [ifPos u]
| isFalse q, isFalse u => repeat rw [ifNeg q]; repeat rw [ifNeg u]
/- A proof that all the entries in `map₁` are also in `map₂` -/
def Inclusion (map₁ map₂ : PartialMap Key Entry) :=
∀ key entry,
map₁.get key = some entry
→ map₂.get key = some entry
/- Map updates preserve inclusion -/
theorem inclusionUpdate (map₁ map₂: PartialMap Key Entry) key entry (h : Inclusion map₁ map₂) :
Inclusion (map₁.update key entry) (map₂.update key entry)
:= by
intro key' entry'
match decEq key key' with
| isTrue q =>
simp -- FIXME: avoid `simp`?
repeat rw [ifPos q]
exact id
| isFalse q =>
repeat rw [getUpdateNeq (h := q)]
exact h key' entry'
end PartialMap
end Maps
@arademaker
Copy link

How can we supply an implementation of DecidableEq`?

@brendanzab
Copy link
Author

It's parametrised over [keyEq : DecidableEq Key], which means you need to either have an instance of the DecidableEq typeclass for Key in scope, or pass it explicitly, like TotalMap Nat (keyEq := myNatDecidableEq) String.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment