Last active
February 10, 2021 12:15
-
-
Save brendanzab/0bfdfc51ad9ab9ea128b78b92e30b815 to your computer and use it in GitHub Desktop.
Total and partial maps in Lean 4 (inspired by Software Foundations)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/- | |
Total and partial maps | |
This is inspired by [the relevant chapter in Software Foundations]. Unlike | |
Software Foundations, these maps are also parameterised over a `Key` | |
type, which must supply an implementation of `DecidableEq`. | |
[Software Foundations]: https://softwarefoundations.cis.upenn.edu/lf-current/Maps.html | |
-/ | |
namespace Maps | |
/- | |
Total maps | |
-/ | |
structure TotalMap (Key : Type) [keyEq : DecidableEq Key] (Entry : Type) where | |
get : Key → Entry | |
namespace TotalMap | |
variables {Key : Type} [keyEq : DecidableEq Key] {Entry : Type} | |
/- Operations -/ | |
/- Update an entry in the map -/ | |
@[reducible] | |
def update (map : TotalMap Key Entry) (key : Key) (entry : Entry) : TotalMap Key Entry := { | |
get := fun key' => | |
if key = key' then entry else map.get key' | |
} | |
/- Construct an empty map -/ | |
@[reducible] | |
def empty (default : Entry) : TotalMap Key Entry := { | |
get := fun key => default | |
} | |
/- Examples -/ | |
private def exampleTotalMap := | |
empty (default := false) | |
|> update (key := 1) (entry := false) | |
|> update (key := 3) (entry := true) | |
example : exampleTotalMap.get 0 = false := rfl | |
example : exampleTotalMap.get 1 = false := rfl | |
example : exampleTotalMap.get 2 = false := rfl | |
example : exampleTotalMap.get 3 = true := rfl | |
/- Properties -/ | |
/- Eta-conversion -/ | |
theorem eta : ∀ (map : TotalMap Key Entry), map = { get := map.get } | |
| { get := get } => rfl | |
/- Congruence of `get` -/ | |
private theorem congrGet {map₁ map₂ : TotalMap Key Entry} (h : map₁.get = map₂.get) : | |
map₁ = map₂ | |
:= by | |
rw [eta map₁, eta map₂] | |
apply congrArg | |
exact h | |
/- The empty map returns its default element for all keys -/ | |
theorem getEmpty (key : Key) (default : Entry) : | |
(empty (default := default)).get key = default | |
:= | |
rfl | |
/- If we update a `map` at a `key` with a new `entry` and then look up `key` | |
in the map resulting from the update, we get back `entry`: -/ | |
theorem getUpdateEq (map : TotalMap Key Entry) key entry : | |
(map.update key entry).get key = entry | |
:= | |
ifPos (c := key = key) rfl | |
/- If we update a `map` at `key₁` and then look up a different `key₂` in | |
the resulting map, we get the same result that `map` would have given -/ | |
theorem getUpdateNeq (map : TotalMap Key Entry) key₁ key₂ entry (h : key₁ ≠ key₂) : | |
(map.update key₁ entry).get key₂ = map.get key₂ | |
:= | |
ifNeg (c := key₁ = key₂) (Ne.intro h) | |
/- If we update a `map` at `key` with `entry₁` and then update again with | |
the same `key` and `entry₂`, the resulting map behaves the same (ie. | |
gives the same result when applied to any key) as the simpler map | |
obtained by performing just the second update on `map`. -/ | |
theorem updateShadow (map : TotalMap Key Entry) entry₁ entry₂ key : | |
(map.update key entry₁).update key entry₂ = map.update key entry₂ | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key' | |
match decEq key key' with | |
| isTrue h => repeat rw [ifPos h] | |
| isFalse h => repeat rw [ifNeg h] | |
/- If we update a `map` to assign `key` the same entry as it already has in | |
`map`, then the result is equal to `map` -/ | |
theorem updateSame (map : TotalMap Key Entry) key : | |
map.update key (map.get key) = map | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key' | |
match decEq key key' with | |
| isTrue h => rw [ifPos h]; rw [h] | |
| isFalse h => rw [ifNeg h] | |
/- If we update a `map` at two distinct keys, it doesn't matter in which | |
order we do the updates. -/ | |
theorem updatePermute entry₁ entry₂ key₁ key₂ (map : TotalMap Key Entry) (h : key₂ ≠ key₁) : | |
(map.update key₂ entry₂).update key₁ entry₁ | |
= (map.update key₁ entry₁).update key₂ entry₂ | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key | |
match decEq key₁ key, decEq key₂ key with | |
| isTrue q, isTrue u => | |
rw [ifPos q, ifPos u] | |
exact absurd (Eq.trans u q.symm) h | |
| isTrue q, isFalse u => repeat rw [ifPos q]; repeat rw [ifNeg u] | |
| isFalse q, isTrue u => repeat rw [ifNeg q]; repeat rw [ifPos u] | |
| isFalse q, isFalse u => repeat rw [ifNeg q]; repeat rw [ifNeg u] | |
end TotalMap | |
/- | |
Partial Maps | |
-/ | |
structure PartialMap (Key : Type) [keyEq: DecidableEq Key] (Entry : Type) where | |
get : Key → Option Entry | |
-- TODO: Lean 4's positivity checker can't see through definitions yet :( | |
-- abbrev PartialMap (Key : Type) [keyEq: DecidableEq Key] (Entry : Type) := | |
-- TotalMap Key (Option Entry) | |
namespace PartialMap | |
variables {Key : Type} [keyEq: DecidableEq Key] {Entry : Type} | |
/- Operations -/ | |
/- Update an entry in the map -/ | |
@[reducible] | |
def update (map : PartialMap Key Entry) (key : Key) (entry : Entry) : PartialMap Key Entry := { | |
get := fun key' => | |
if key = key' then some entry else map.get key' | |
} | |
/- Construct an empty map -/ | |
@[reducible] | |
def empty : PartialMap Key Entry := { | |
get := fun key => none | |
} | |
/- Examples -/ | |
private def exampleMap := | |
empty | |
|> update (key := "Church") (entry := false) | |
|> update (key := "Turing") (entry := true) | |
example : exampleMap.get "Church" = false := rfl | |
example : exampleMap.get "Turing" = true := rfl | |
example : exampleMap.get "Gödel" = none := rfl | |
/- Properties -/ | |
/- Eta-conversion -/ | |
theorem eta : ∀ (map : PartialMap Key Entry), map = { get := map.get } | |
| { get := get } => rfl | |
/- Congruence of `get` -/ | |
private theorem congrGet {map₁ map₂ : PartialMap Key Entry} (h : map₁.get = map₂.get) : | |
map₁ = map₂ | |
:= by | |
rw [eta map₁, eta map₂] | |
apply congrArg | |
exact h | |
/- The empty map returns its default element for all keys -/ | |
theorem getEmpty (key : Key) : | |
(empty (Entry := Entry)).get key = none | |
:= | |
rfl | |
/- If we update a `map` at a `key` with a new `entry` and then look up `key` | |
in the map resulting from the update, we get back `entry`: -/ | |
theorem getUpdateEq (map : PartialMap Key Entry) key entry : | |
(map.update key entry).get key = entry | |
:= | |
ifPos (c := key = key) rfl | |
/- If we update a `map` at `key₁` and then look up a different `key₂` in | |
the resulting map, we get the same result that `map` would have given -/ | |
theorem getUpdateNeq (map : PartialMap Key Entry) key₁ key₂ entry (h : key₁ ≠ key₂) : | |
(map.update key₁ entry).get key₂ = map.get key₂ | |
:= | |
ifNeg (c := key₁ = key₂) (Ne.intro h) | |
/- If we update a `map` at `key` with `entry₁` and then update again with | |
the same `key` and `entry₂`, the resulting map behaves the same (ie. | |
gives the same result when applied to any key) as the simpler map | |
obtained by performing just the second update on `map`. -/ | |
theorem updateShadow (map : PartialMap Key Entry) entry₁ entry₂ key : | |
(map.update key entry₁).update key entry₂ = map.update key entry₂ | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key' | |
match decEq key key' with | |
| isTrue h => repeat rw [ifPos h] | |
| isFalse h => repeat rw [ifNeg h] | |
/- If we update a `map` to assign `key` the same entry as it already has in | |
`map`, then the result is equal to `map` -/ | |
theorem updateSame (map : PartialMap Key Entry) key entry (h : map.get key = some entry) : | |
map.update key entry = map | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key' | |
match decEq key key' with | |
| isTrue q => | |
rw [ifPos q, q.symm] | |
exact h.symm | |
| isFalse q => rw [ifNeg q] | |
/- If we update a `map` at two distinct keys, it doesn't matter in which | |
order we do the updates. -/ | |
theorem updatePermute entry₁ entry₂ key₁ key₂ (map : PartialMap Key Entry) (h : key₂ ≠ key₁) : | |
(map.update key₂ entry₂).update key₁ entry₁ | |
= (map.update key₁ entry₁).update key₂ entry₂ | |
:= by | |
apply congrGet | |
simp -- FIXME: avoid `simp`? | |
funext key | |
match decEq key₁ key, decEq key₂ key with | |
| isTrue q, isTrue u => | |
rw [ifPos q, ifPos u] | |
exact absurd (Eq.trans u q.symm) h | |
| isTrue q, isFalse u => repeat rw [ifPos q]; repeat rw [ifNeg u] | |
| isFalse q, isTrue u => repeat rw [ifNeg q]; repeat rw [ifPos u] | |
| isFalse q, isFalse u => repeat rw [ifNeg q]; repeat rw [ifNeg u] | |
/- A proof that all the entries in `map₁` are also in `map₂` -/ | |
def Inclusion (map₁ map₂ : PartialMap Key Entry) := | |
∀ key entry, | |
map₁.get key = some entry | |
→ map₂.get key = some entry | |
/- Map updates preserve inclusion -/ | |
theorem inclusionUpdate (map₁ map₂: PartialMap Key Entry) key entry (h : Inclusion map₁ map₂) : | |
Inclusion (map₁.update key entry) (map₂.update key entry) | |
:= by | |
intro key' entry' | |
match decEq key key' with | |
| isTrue q => | |
simp -- FIXME: avoid `simp`? | |
repeat rw [ifPos q] | |
exact id | |
| isFalse q => | |
repeat rw [getUpdateNeq (h := q)] | |
exact h key' entry' | |
end PartialMap | |
end Maps |
It's parametrised over [keyEq : DecidableEq Key]
, which means you need to either have an instance of the DecidableEq
typeclass for Key
in scope, or pass it explicitly, like TotalMap Nat (keyEq := myNatDecidableEq) String
.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How can we
supply an implementation of
DecidableEq`?