Created
May 20, 2019 15:11
-
-
Save bryanlimy/b847b096ba330633e6e7379503855d85 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def transformer(vocab_size, | |
num_layers, | |
units, | |
d_model, | |
num_heads, | |
dropout, | |
name="transformer"): | |
inputs = tf.keras.Input(shape=(None,), name="inputs") | |
dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs") | |
enc_padding_mask = tf.keras.layers.Lambda( | |
create_padding_mask, output_shape=(1, 1, None), | |
name='enc_padding_mask')(inputs) | |
# mask the future tokens for decoder inputs at the 1st attention block | |
look_ahead_mask = tf.keras.layers.Lambda( | |
create_look_ahead_mask, | |
output_shape=(1, None, None), | |
name='look_ahead_mask')(dec_inputs) | |
# mask the encoder outputs for the 2nd attention block | |
dec_padding_mask = tf.keras.layers.Lambda( | |
create_padding_mask, output_shape=(1, 1, None), | |
name='dec_padding_mask')(inputs) | |
enc_outputs = encoder( | |
vocab_size=vocab_size, | |
num_layers=num_layers, | |
units=units, | |
d_model=d_model, | |
num_heads=num_heads, | |
dropout=dropout, | |
)(inputs=[inputs, enc_padding_mask]) | |
dec_outputs = decoder( | |
vocab_size=vocab_size, | |
num_layers=num_layers, | |
units=units, | |
d_model=d_model, | |
num_heads=num_heads, | |
dropout=dropout, | |
)(inputs=[dec_inputs, enc_outputs, look_ahead_mask, dec_padding_mask]) | |
outputs = tf.keras.layers.Dense(units=vocab_size, name="outputs")(dec_outputs) | |
return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment