Last active
August 3, 2019 03:57
-
-
Save bsod90/0cf9f57eadb0c6c8c132a9f05511a580 to your computer and use it in GitHub Desktop.
Sample encoder interface and Universal Sentence Encoder client
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
from abc import ABC, abstractmethod | |
from typing import Iterable, List | |
import requests | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
class Encoder(ABC): | |
"""A shared encoder interface. | |
Each client must provide an encode() method and a FEATURE_SIZE | |
constant indicating the size of encoded vectors""" | |
FEATURE_SIZE: int | |
@abstractmethod | |
def encode(self, data: Iterable[str]) -> np.array: | |
pass | |
class UniversalEncoderError(Exception): | |
pass | |
class UniversalEncoder(Encoder): | |
""" | |
Requests-based client for the Universal Sentence Encoder TF model | |
""" | |
# Length of returned vectors | |
FEATURE_SIZE = 512 | |
BATCH_SIZE = 32 | |
def __init__(self, host, port): | |
self.server_url = "http://{host}:{port}".format( | |
host=host, | |
port=port, | |
) | |
@staticmethod | |
def _sanitize_input(sentence: str): | |
return sentence.replace('\n', '').lower().strip()[:1000] | |
def encode(self, data: Iterable[str]) -> np.array: | |
logger.debug(f"Encode request: {data}") | |
data = [self._sanitize_input(sentence) for sentence in data] | |
all_vectors: List[List[float]] = [] | |
for i in range(0, len(data), self.BATCH_SIZE): | |
batch = data[i:i+self.BATCH_SIZE] | |
response = requests.post( | |
url=self.server_url, | |
json={ | |
"model_name": "default", | |
"model_version": "00000001", | |
"data": { | |
"text": batch | |
} | |
} | |
) | |
if not response.ok: | |
raise UniversalEncoderError( | |
f"Bad response from encoder: {response}" | |
) | |
all_vectors += response.json()['embeddings'] | |
return np.array(all_vectors).astype(np.float32) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment