Created
March 16, 2009 13:32
-
-
Save btbytes/79877 to your computer and use it in GitHub Desktop.
A simple Particle Swarm Optimisation implementation in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*~ | |
*.pyc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
''' | |
pso.py | |
A simple implementation of the Particle Swarm Optimisation Algorithm. | |
Uses Numpy for matrix operations. | |
Pradeep Gowda 2009-03-16 | |
''' | |
from numpy import array | |
from random import random | |
from math import sin, sqrt | |
iter_max = 10000 | |
pop_size = 100 | |
dimensions = 2 | |
c1 = 2 | |
c2 = 2 | |
err_crit = 0.00001 | |
class Particle: | |
pass | |
def f6(param): | |
'''Schaffer's F6 function''' | |
para = param*10 | |
para = param[0:2] | |
num = (sin(sqrt((para[0] * para[0]) + (para[1] * para[1])))) * \ | |
(sin(sqrt((para[0] * para[0]) + (para[1] * para[1])))) - 0.5 | |
denom = (1.0 + 0.001 * ((para[0] * para[0]) + (para[1] * para[1]))) * \ | |
(1.0 + 0.001 * ((para[0] * para[0]) + (para[1] * para[1]))) | |
f6 = 0.5 - (num/denom) | |
errorf6 = 1 - f6 | |
return f6, errorf6; | |
#initialize the particles | |
particles = [] | |
for i in range(pop_size): | |
p = Particle() | |
p.params = array([random() for i in range(dimensions)]) | |
p.fitness = 0.0 | |
p.v = 0.0 | |
particles.append(p) | |
# let the first particle be the global best | |
gbest = particles[0] | |
err = 999999999 | |
while i < iter_max : | |
for p in particles: | |
fitness,err = f6(p.params) | |
if fitness > p.fitness: | |
p.fitness = fitness | |
p.best = p.params | |
if fitness > gbest.fitness: | |
gbest = p | |
v = p.v + c1 * random() * (p.best - p.params) \ | |
+ c2 * random() * (gbest.params - p.params) | |
p.params = p.params + v | |
i += 1 | |
if err < err_crit: | |
break | |
#progress bar. '.' = 10% | |
if i % (iter_max/10) == 0: | |
print '.' | |
print '\nParticle Swarm Optimisation\n' | |
print 'PARAMETERS\n','-'*9 | |
print 'Population size : ', pop_size | |
print 'Dimensions : ', dimensions | |
print 'Error Criterion : ', err_crit | |
print 'c1 : ', c1 | |
print 'c2 : ', c2 | |
print 'function : f6' | |
print 'RESULTS\n', '-'*7 | |
print 'gbest fitness : ', gbest.fitness | |
print 'gbest params : ', gbest.params | |
print 'iterations : ', i+1 | |
## Uncomment to print particles | |
#for p in particles: | |
# print 'params: %s, fitness: %s, best: %s' % (p.params, p.fitness, p.best) |
Thanks for putting this here. I studied your code for my first class project.
thanks you very much, love you
I think we also need to update the particle velocity after calculating the updated particle position
v = p.v + c1 * random() * (p.best- p.param) \
+ c2 * random() * (gbest.param- p.param)
p.param = p.param + v
p.v= v
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Can I use your code?