Skip to content

Instantly share code, notes, and snippets.

@btbytes
Created March 16, 2009 13:32
Show Gist options
  • Save btbytes/79877 to your computer and use it in GitHub Desktop.
Save btbytes/79877 to your computer and use it in GitHub Desktop.
A simple Particle Swarm Optimisation implementation in Python

A Particle Swarm Implementation in Python

#!/usr/bin/env python
'''
pso.py
A simple implementation of the Particle Swarm Optimisation Algorithm.
Uses Numpy for matrix operations.
Pradeep Gowda 2009-03-16
'''
from numpy import array
from random import random
from math import sin, sqrt
iter_max = 10000
pop_size = 100
dimensions = 2
c1 = 2
c2 = 2
err_crit = 0.00001
class Particle:
pass
def f6(param):
'''Schaffer's F6 function'''
para = param*10
para = param[0:2]
num = (sin(sqrt((para[0] * para[0]) + (para[1] * para[1])))) * \
(sin(sqrt((para[0] * para[0]) + (para[1] * para[1])))) - 0.5
denom = (1.0 + 0.001 * ((para[0] * para[0]) + (para[1] * para[1]))) * \
(1.0 + 0.001 * ((para[0] * para[0]) + (para[1] * para[1])))
f6 = 0.5 - (num/denom)
errorf6 = 1 - f6
return f6, errorf6;
#initialize the particles
particles = []
for i in range(pop_size):
p = Particle()
p.params = array([random() for i in range(dimensions)])
p.fitness = 0.0
p.v = 0.0
particles.append(p)
# let the first particle be the global best
gbest = particles[0]
err = 999999999
while i < iter_max :
for p in particles:
fitness,err = f6(p.params)
if fitness > p.fitness:
p.fitness = fitness
p.best = p.params
if fitness > gbest.fitness:
gbest = p
v = p.v + c1 * random() * (p.best - p.params) \
+ c2 * random() * (gbest.params - p.params)
p.params = p.params + v
i += 1
if err < err_crit:
break
#progress bar. '.' = 10%
if i % (iter_max/10) == 0:
print '.'
print '\nParticle Swarm Optimisation\n'
print 'PARAMETERS\n','-'*9
print 'Population size : ', pop_size
print 'Dimensions : ', dimensions
print 'Error Criterion : ', err_crit
print 'c1 : ', c1
print 'c2 : ', c2
print 'function : f6'
print 'RESULTS\n', '-'*7
print 'gbest fitness : ', gbest.fitness
print 'gbest params : ', gbest.params
print 'iterations : ', i+1
## Uncomment to print particles
#for p in particles:
# print 'params: %s, fitness: %s, best: %s' % (p.params, p.fitness, p.best)
@jecs89
Copy link

jecs89 commented May 24, 2016

Can I use your code?

@DMandy
Copy link

DMandy commented Apr 18, 2017

Thanks for putting this here. I studied your code for my first class project.

@nam77156
Copy link

nam77156 commented Jun 1, 2018

thanks you very much, love you

@konark51
Copy link

I think we also need to update the particle velocity after calculating the updated particle position

v = p.v + c1 * random() * (p.best- p.param) \
                + c2 * random() * (gbest.param- p.param)
        p.param = p.param + v
        p.v= v

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment