Last active
January 6, 2023 14:33
-
-
Save calpolystat/1d63ae1c5c5e3a4a5969 to your computer and use it in GitHub Desktop.
Chaos Game -- 3 Dimensions: Shiny app at http://www.statistics.calpoly.edu/shiny
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Chaos Game in 3 Dimensions Shiny App | |
Base R code created by Jimmy Doi | |
Shiny app files created by Jimmy Doi | |
Cal Poly Statistics Dept Shiny Series | |
http://statistics.calpoly.edu/shiny |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Title: Chaos Game -- 3 Dimensions | |
Author: Jimmy Doi | |
AuthorUrl: http://www.calpoly.edu/~jdoi | |
License: MIT | |
DisplayMode: Normal | |
Tags: Chaos game, fractal, random | |
Type: Shiny |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The MIT License (MIT) | |
Copyright (c) 2015 Jimmy Doi | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in | |
all copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
THE SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ---------------------------------------- | |
# App Title: Chaos Game -- 3 Dimensions | |
# Author: Jimmy Doi | |
# ---------------------------------------- | |
################################################################### | |
# Tetrahedron | |
################################################################### | |
tetra.gen <- function(wt){ | |
weight <- wt | |
len <- 50000 | |
# loci matrix to contain all endpoints | |
loci <- matrix(NA,ncol=4,nrow=4) | |
loci[1,] <- c(1,1,0,-1/sqrt(2)) | |
loci[2,] <- c(2,-1,0,-1/sqrt(2)) | |
loci[3,] <- c(3,0,1,1/sqrt(2)) | |
loci[4,] <- c(4,0,-1,1/sqrt(2)) | |
# vertices contains all random vertex points | |
vertices <- runif(len) | |
vertices[which(vertices>3/4)]<- 4 | |
vertices[which(2/4<vertices & vertices<=3/4)]<- 3 | |
vertices[which(1/4<vertices & vertices<=2/4)]<- 2 | |
vertices[which(vertices<=1/4)]<- 1 | |
coords <- matrix(NA,ncol=4,nrow=(len+1)) | |
coords[1,] <- c(runif(1),runif(1)*sqrt(3)/2,runif(1)*sqrt(6)/3,0) | |
for (i in 1:len){ | |
row <- i+1 | |
spot <- which(loci[,1]==vertices[i]) | |
x <- loci[spot,2] | |
y <- loci[spot,3] | |
z <- loci[spot,4] | |
x.new <- weight*x + (1-weight)*coords[i,1] | |
y.new <- weight*y + (1-weight)*coords[i,2] | |
z.new <- weight*z + (1-weight)*coords[i,3] | |
coords[row,]<-c(x.new,y.new,z.new,0) | |
} | |
for (i in 1:(len+1)){ | |
d1 <- sqrt((coords[i,1]-loci[1,2])**2 + (coords[i,2]-loci[1,3])**2 + (coords[i,3]-loci[1,4])**2) | |
d2 <- sqrt((coords[i,1]-loci[2,2])**2 + (coords[i,2]-loci[2,3])**2 + (coords[i,3]-loci[2,4])**2) | |
d3 <- sqrt((coords[i,1]-loci[3,2])**2 + (coords[i,2]-loci[3,3])**2 + (coords[i,3]-loci[3,4])**2) | |
d4 <- sqrt((coords[i,1]-loci[4,2])**2 + (coords[i,2]-loci[4,3])**2 + (coords[i,3]-loci[4,4])**2) | |
if (min(d1,d2,d3,d4)==d1) coords[i,4]<-1 | |
if (min(d1,d2,d3,d4)==d2) coords[i,4]<-2 | |
if (min(d1,d2,d3,d4)==d3) coords[i,4]<-3 | |
if (min(d1,d2,d3,d4)==d4) coords[i,4]<-4 | |
} | |
return(list(loci,vertices,coords)) | |
} | |
################################################################### | |
# Cube | |
################################################################### | |
cube.gen <- function(wt){ | |
weight <- wt | |
len <- 50000 | |
# loci matrix to contain all endpoints | |
loci <- matrix(NA,ncol=4,nrow=20) | |
loci[1,] <- c(1,0,0,0) | |
loci[2,] <- c(2,.5,0,0) | |
loci[3,] <- c(3,1,0,0) | |
loci[4,] <- c(4,1,.5,0) | |
loci[5,] <- c(5,1,1,0) | |
loci[6,] <- c(6,.5,1,0) | |
loci[7,] <- c(7,0,1,0) | |
loci[8,] <- c(8,0,.5,0) | |
loci[9,] <- c(9,1,0,.5) | |
loci[10,] <- c(10,0,0,.5) | |
loci[11,] <- c(11,0,1,.5) | |
loci[12,] <- c(12,1,1,.5) | |
loci[13,] <- c(13,0,0,1) | |
loci[14,] <- c(14,.5,0,1) | |
loci[15,] <- c(15,1,0,1) | |
loci[16,] <- c(16,1,.5,1) | |
loci[17,] <- c(17,1,1,1) | |
loci[18,] <- c(18,.5,1,1) | |
loci[19,] <- c(19,0,1,1) | |
loci[20,] <- c(20,0,.5,1) | |
# vertices contains all random vertex points | |
vertices <- runif(len) | |
vertices[which(vertices>19/20)]<- 20 | |
vertices[which(18/20<vertices & vertices<=19/20)]<- 19 | |
vertices[which(17/20<vertices & vertices<=18/20)]<- 18 | |
vertices[which(16/20<vertices & vertices<=17/20)]<- 17 | |
vertices[which(15/20<vertices & vertices<=16/20)]<- 16 | |
vertices[which(14/20<vertices & vertices<=15/20)]<- 15 | |
vertices[which(13/20<vertices & vertices<=14/20)]<- 14 | |
vertices[which(12/20<vertices & vertices<=13/20)]<- 13 | |
vertices[which(11/20<vertices & vertices<=12/20)]<- 12 | |
vertices[which(10/20<vertices & vertices<=11/20)]<- 11 | |
vertices[which(9/20<vertices & vertices<= 10/20)]<- 10 | |
vertices[which(8/20<vertices & vertices<= 9/20)]<- 9 | |
vertices[which(7/20<vertices & vertices<= 8/20)]<- 8 | |
vertices[which(6/20<vertices & vertices<= 7/20)]<- 7 | |
vertices[which(5/20<vertices & vertices<= 6/20)]<- 6 | |
vertices[which(4/20<vertices & vertices<= 5/20)]<- 5 | |
vertices[which(3/20<vertices & vertices<= 4/20)]<- 4 | |
vertices[which(2/20<vertices & vertices<= 3/20)]<- 3 | |
vertices[which(1/20<vertices & vertices<= 2/20)]<- 2 | |
vertices[which(vertices<=1/20)]<- 1 | |
coords <- matrix(NA,ncol=4,nrow=(len+1)) | |
coords[1,] <- c(runif(1),runif(1),runif(1),0) | |
for (i in 1:len){ | |
row <- i+1 | |
spot <- which(loci[,1]==vertices[i]) | |
x <- loci[spot,2] | |
y <- loci[spot,3] | |
z <- loci[spot,4] | |
x.new <- weight*x + (1-weight)*coords[i,1] | |
y.new <- weight*y + (1-weight)*coords[i,2] | |
z.new <- weight*z + (1-weight)*coords[i,3] | |
coords[row,]<-c(x.new,y.new,z.new,0) | |
} | |
for (i in 1:(len+1)){ | |
d1 <- sqrt((coords[i,1]-loci[1,2])**2 + (coords[i,2]- loci[1,3])**2 + (coords[i,3]- loci[1,4])**2) | |
d2 <- sqrt((coords[i,1]-loci[2,2])**2 + (coords[i,2]- loci[2,3])**2 + (coords[i,3]- loci[2,4])**2) | |
d3 <- sqrt((coords[i,1]-loci[3,2])**2 + (coords[i,2]- loci[3,3])**2 + (coords[i,3]- loci[3,4])**2) | |
d4 <- sqrt((coords[i,1]-loci[4,2])**2 + (coords[i,2]- loci[4,3])**2 + (coords[i,3]- loci[4,4])**2) | |
d5 <- sqrt((coords[i,1]-loci[5,2])**2 + (coords[i,2]- loci[5,3])**2 + (coords[i,3]- loci[5,4])**2) | |
d6 <- sqrt((coords[i,1]-loci[6,2])**2 + (coords[i,2]- loci[6,3])**2 + (coords[i,3]- loci[6,4])**2) | |
d7 <- sqrt((coords[i,1]-loci[7,2])**2 + (coords[i,2]- loci[7,3])**2 + (coords[i,3]- loci[7,4])**2) | |
d8 <- sqrt((coords[i,1]-loci[8,2])**2 + (coords[i,2]- loci[8,3])**2 + (coords[i,3]- loci[8,4])**2) | |
d9 <- sqrt((coords[i,1]-loci[9,2])**2 + (coords[i,2]- loci[9,3])**2 + (coords[i,3]- loci[9,4])**2) | |
d10<- sqrt((coords[i,1]-loci[10,2])**2 + (coords[i,2]-loci[10,3])**2 + (coords[i,3]-loci[10,4])**2) | |
d11<- sqrt((coords[i,1]-loci[11,2])**2 + (coords[i,2]-loci[11,3])**2 + (coords[i,3]-loci[11,4])**2) | |
d12<- sqrt((coords[i,1]-loci[12,2])**2 + (coords[i,2]-loci[12,3])**2 + (coords[i,3]-loci[12,4])**2) | |
d13<- sqrt((coords[i,1]-loci[13,2])**2 + (coords[i,2]-loci[13,3])**2 + (coords[i,3]-loci[13,4])**2) | |
d14<- sqrt((coords[i,1]-loci[14,2])**2 + (coords[i,2]-loci[14,3])**2 + (coords[i,3]-loci[14,4])**2) | |
d15<- sqrt((coords[i,1]-loci[15,2])**2 + (coords[i,2]-loci[15,3])**2 + (coords[i,3]-loci[15,4])**2) | |
d16<- sqrt((coords[i,1]-loci[16,2])**2 + (coords[i,2]-loci[16,3])**2 + (coords[i,3]-loci[16,4])**2) | |
d17<- sqrt((coords[i,1]-loci[17,2])**2 + (coords[i,2]-loci[17,3])**2 + (coords[i,3]-loci[17,4])**2) | |
d18<- sqrt((coords[i,1]-loci[18,2])**2 + (coords[i,2]-loci[18,3])**2 + (coords[i,3]-loci[18,4])**2) | |
d19<- sqrt((coords[i,1]-loci[19,2])**2 + (coords[i,2]-loci[19,3])**2 + (coords[i,3]-loci[19,4])**2) | |
d20<- sqrt((coords[i,1]-loci[20,2])**2 + (coords[i,2]-loci[20,3])**2 + (coords[i,3]-loci[20,4])**2) | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d1) coords[i,4]<-1 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d2) coords[i,4]<-2 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d3) coords[i,4]<-3 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d4) coords[i,4]<-4 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d5) coords[i,4]<-5 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d6) coords[i,4]<-6 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d7) coords[i,4]<-7 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d8) coords[i,4]<-8 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d9) coords[i,4]<-9 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d10) coords[i,4]<-10 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d11) coords[i,4]<-11 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d12) coords[i,4]<-12 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d13) coords[i,4]<-13 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d14) coords[i,4]<-14 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d15) coords[i,4]<-15 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d16) coords[i,4]<-16 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d17) coords[i,4]<-17 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d18) coords[i,4]<-18 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d19) coords[i,4]<-19 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d20) coords[i,4]<-20 | |
} | |
return(list(loci,vertices,coords)) | |
} | |
################################################################### | |
# Dodecahedron | |
################################################################### | |
dodec.gen <- function(wt){ | |
weight <- wt | |
len <- 50000 | |
# loci matrix to contain all endpoints | |
loci <- matrix(NA,ncol=4,nrow=20) | |
psi <- (1+sqrt(5))/2 | |
loci[1,] <- c(1,1,-1,1) | |
loci[2,] <- c(2,1,1,-1) | |
loci[3,] <- c(3,psi,0,-1/psi) | |
loci[4,] <- c(4,1,1,1) | |
loci[5,] <- c(5,-1,1,1) | |
loci[6,] <- c(6,-1,1,-1) | |
loci[7,] <- c(7,1/psi,psi,0) | |
loci[8,] <- c(8,0,1/psi,psi) | |
loci[9,] <- c(9,-psi,0,-1/psi) | |
loci[10,] <- c(10,0,-1/psi,-psi) | |
loci[11,] <- c(11,0,-1/psi,psi) | |
loci[12,] <- c(12,0,1/psi,-psi) | |
loci[13,] <- c(13,-1/psi,psi,0) | |
loci[14,] <- c(14,-psi,0,1/psi) | |
loci[15,] <- c(15,-1,-1,1) | |
loci[16,] <- c(16,-1/psi,-psi,0) | |
loci[17,] <- c(17,psi,0,1/psi) | |
loci[18,] <- c(18,1,-1,-1) | |
loci[19,] <- c(19,1/psi,-psi,0) | |
loci[20,] <- c(20,-1,-1,-1) | |
# vertices contains all random vertex points | |
vertices <- runif(len) | |
vertices[which(vertices>19/20)]<- 20 | |
vertices[which(18/20<vertices & vertices<=19/20)]<- 19 | |
vertices[which(17/20<vertices & vertices<=18/20)]<- 18 | |
vertices[which(16/20<vertices & vertices<=17/20)]<- 17 | |
vertices[which(15/20<vertices & vertices<=16/20)]<- 16 | |
vertices[which(14/20<vertices & vertices<=15/20)]<- 15 | |
vertices[which(13/20<vertices & vertices<=14/20)]<- 14 | |
vertices[which(12/20<vertices & vertices<=13/20)]<- 13 | |
vertices[which(11/20<vertices & vertices<=12/20)]<- 12 | |
vertices[which(10/20<vertices & vertices<=11/20)]<- 11 | |
vertices[which(9/20<vertices & vertices<= 10/20)]<- 10 | |
vertices[which(8/20<vertices & vertices<= 9/20)]<- 9 | |
vertices[which(7/20<vertices & vertices<= 8/20)]<- 8 | |
vertices[which(6/20<vertices & vertices<= 7/20)]<- 7 | |
vertices[which(5/20<vertices & vertices<= 6/20)]<- 6 | |
vertices[which(4/20<vertices & vertices<= 5/20)]<- 5 | |
vertices[which(3/20<vertices & vertices<= 4/20)]<- 4 | |
vertices[which(2/20<vertices & vertices<= 3/20)]<- 3 | |
vertices[which(1/20<vertices & vertices<= 2/20)]<- 2 | |
vertices[which(vertices<=1/20)]<- 1 | |
coords <- matrix(NA,ncol=4,nrow=(len+1)) | |
coords[1,] <- c(runif(1),runif(1),runif(1),0) | |
for (i in 1:len){ | |
row <- i+1 | |
spot <- which(loci[,1]==vertices[i]) | |
x <- loci[spot,2] | |
y <- loci[spot,3] | |
z <- loci[spot,4] | |
x.new <- weight*x + (1-weight)*coords[i,1] | |
y.new <- weight*y + (1-weight)*coords[i,2] | |
z.new <- weight*z + (1-weight)*coords[i,3] | |
coords[row,]<-c(x.new,y.new,z.new,0) | |
} | |
for (i in 1:(len+1)){ | |
d1 <- sqrt((coords[i,1]-loci[1,2])**2 + (coords[i,2]- loci[1,3])**2 + (coords[i,3]- loci[1,4])**2) | |
d2 <- sqrt((coords[i,1]-loci[2,2])**2 + (coords[i,2]- loci[2,3])**2 + (coords[i,3]- loci[2,4])**2) | |
d3 <- sqrt((coords[i,1]-loci[3,2])**2 + (coords[i,2]- loci[3,3])**2 + (coords[i,3]- loci[3,4])**2) | |
d4 <- sqrt((coords[i,1]-loci[4,2])**2 + (coords[i,2]- loci[4,3])**2 + (coords[i,3]- loci[4,4])**2) | |
d5 <- sqrt((coords[i,1]-loci[5,2])**2 + (coords[i,2]- loci[5,3])**2 + (coords[i,3]- loci[5,4])**2) | |
d6 <- sqrt((coords[i,1]-loci[6,2])**2 + (coords[i,2]- loci[6,3])**2 + (coords[i,3]- loci[6,4])**2) | |
d7 <- sqrt((coords[i,1]-loci[7,2])**2 + (coords[i,2]- loci[7,3])**2 + (coords[i,3]- loci[7,4])**2) | |
d8 <- sqrt((coords[i,1]-loci[8,2])**2 + (coords[i,2]- loci[8,3])**2 + (coords[i,3]- loci[8,4])**2) | |
d9 <- sqrt((coords[i,1]-loci[9,2])**2 + (coords[i,2]- loci[9,3])**2 + (coords[i,3]- loci[9,4])**2) | |
d10<- sqrt((coords[i,1]-loci[10,2])**2 + (coords[i,2]-loci[10,3])**2 + (coords[i,3]-loci[10,4])**2) | |
d11<- sqrt((coords[i,1]-loci[11,2])**2 + (coords[i,2]-loci[11,3])**2 + (coords[i,3]-loci[11,4])**2) | |
d12<- sqrt((coords[i,1]-loci[12,2])**2 + (coords[i,2]-loci[12,3])**2 + (coords[i,3]-loci[12,4])**2) | |
d13<- sqrt((coords[i,1]-loci[13,2])**2 + (coords[i,2]-loci[13,3])**2 + (coords[i,3]-loci[13,4])**2) | |
d14<- sqrt((coords[i,1]-loci[14,2])**2 + (coords[i,2]-loci[14,3])**2 + (coords[i,3]-loci[14,4])**2) | |
d15<- sqrt((coords[i,1]-loci[15,2])**2 + (coords[i,2]-loci[15,3])**2 + (coords[i,3]-loci[15,4])**2) | |
d16<- sqrt((coords[i,1]-loci[16,2])**2 + (coords[i,2]-loci[16,3])**2 + (coords[i,3]-loci[16,4])**2) | |
d17<- sqrt((coords[i,1]-loci[17,2])**2 + (coords[i,2]-loci[17,3])**2 + (coords[i,3]-loci[17,4])**2) | |
d18<- sqrt((coords[i,1]-loci[18,2])**2 + (coords[i,2]-loci[18,3])**2 + (coords[i,3]-loci[18,4])**2) | |
d19<- sqrt((coords[i,1]-loci[19,2])**2 + (coords[i,2]-loci[19,3])**2 + (coords[i,3]-loci[19,4])**2) | |
d20<- sqrt((coords[i,1]-loci[20,2])**2 + (coords[i,2]-loci[20,3])**2 + (coords[i,3]-loci[20,4])**2) | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d1) coords[i,4]<-1 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d2) coords[i,4]<-2 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d3) coords[i,4]<-3 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d4) coords[i,4]<-4 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d5) coords[i,4]<-5 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d6) coords[i,4]<-6 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d7) coords[i,4]<-7 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d8) coords[i,4]<-8 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d9) coords[i,4]<-9 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d10) coords[i,4]<-10 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d11) coords[i,4]<-11 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d12) coords[i,4]<-12 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d13) coords[i,4]<-13 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d14) coords[i,4]<-14 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d15) coords[i,4]<-15 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d16) coords[i,4]<-16 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d17) coords[i,4]<-17 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d18) coords[i,4]<-18 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d19) coords[i,4]<-19 | |
if (min(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,d20)==d20) coords[i,4]<-20 | |
} | |
return(list(loci,vertices,coords)) | |
} | |
############################################################################## | |
# Shiny Server Contents | |
############################################################################## | |
shinyServer(function(input, output, session) { | |
updateButton(session, "gen", style = "primary", size = "default", disabled = FALSE) | |
all.list <- reactive({ | |
withProgress(message = 'Generating Coordinates', style = 'notification', value = 1, { | |
if (input$shape == "tetra") { | |
return(tetra.gen(input$dist.tetra*(input$gen>-1))) | |
} | |
if (input$shape == "cube") { | |
return(cube.gen(input$dist.cube*(input$gen>-1))) | |
} | |
if (input$shape == "dodec") { | |
return(dodec.gen(input$dist.dodec*(input$gen>-1))) | |
} | |
}) #CLOSE withProgress | |
}) | |
output$sctPlot <- renderRglwidget({ | |
withProgress(message = 'Please wait up to 15 seconds', style = 'notification', value = 1, { | |
try(rgl.close()) | |
withProgress(message = 'Generating Plot', style = 'notification', value = 1, { | |
loci <- all.list()[[1]] | |
vertices <- all.list()[[2]] | |
coords <- all.list()[[3]] | |
if (max(coords[,4]==4)) { | |
set1 <- coords[coords[,4]==1,1:3] | |
set2 <- coords[coords[,4]==2,1:3] | |
set3 <- coords[coords[,4]==3,1:3] | |
set4 <- coords[coords[,4]==4,1:3] | |
col1 <- brewer.pal(n = 12, name = "Paired")[2] | |
col2 <- brewer.pal(n = 12, name = "Paired")[4] | |
col3 <- brewer.pal(n = 12, name = "Paired")[8] | |
col4 <- brewer.pal(n = 12, name = "Paired")[10] | |
points3d(set1[1:round(nrow(set1)*(input$pts/100),0),1], | |
set1[1:round(nrow(set1)*(input$pts/100),0),2], | |
set1[1:round(nrow(set1)*(input$pts/100),0),3], | |
size = 1.25,col=col1) | |
points3d(set2[1:round(nrow(set2)*(input$pts/100),0),1], | |
set2[1:round(nrow(set2)*(input$pts/100),0),2], | |
set2[1:round(nrow(set2)*(input$pts/100),0),3], | |
size = 1.25,col=col2) | |
points3d(set3[1:round(nrow(set3)*(input$pts/100),0),1], | |
set3[1:round(nrow(set3)*(input$pts/100),0),2], | |
set3[1:round(nrow(set3)*(input$pts/100),0),3], | |
size = 1.25,col=col3) | |
points3d(set4[1:round(nrow(set4)*(input$pts/100),0),1], | |
set4[1:round(nrow(set4)*(input$pts/100),0),2], | |
set4[1:round(nrow(set4)*(input$pts/100),0),3], | |
size = 1.25,col=col4) | |
} | |
if (max(coords[,4]==20)) { | |
set1 <- coords[coords[,4]==1,1:3] | |
set2 <- coords[coords[,4]==2,1:3] | |
set3 <- coords[coords[,4]==3,1:3] | |
set4 <- coords[coords[,4]==4,1:3] | |
set5 <- coords[coords[,4]==5,1:3] | |
set6 <- coords[coords[,4]==6,1:3] | |
set7 <- coords[coords[,4]==7,1:3] | |
set8 <- coords[coords[,4]==8,1:3] | |
set9 <- coords[coords[,4]==9,1:3] | |
set10<- coords[coords[,4]==10,1:3] | |
set11<- coords[coords[,4]==11,1:3] | |
set12<- coords[coords[,4]==12,1:3] | |
set13<- coords[coords[,4]==13,1:3] | |
set14<- coords[coords[,4]==14,1:3] | |
set15<- coords[coords[,4]==15,1:3] | |
set16<- coords[coords[,4]==16,1:3] | |
set17<- coords[coords[,4]==17,1:3] | |
set18<- coords[coords[,4]==18,1:3] | |
set19<- coords[coords[,4]==19,1:3] | |
set20<- coords[coords[,4]==20,1:3] | |
col1 <- brewer.pal(n = 12, name = "Paired")[2] #dark blue | |
col2 <- brewer.pal(n = 12, name = "Paired")[4] #dark green | |
col3 <- brewer.pal(n = 12, name = "Paired")[6] #red | |
col4 <- brewer.pal(n = 12, name = "Paired")[8] #orange | |
col5 <- brewer.pal(n = 11, name = "RdBu")[11] #DarkBl | |
col6 <- brewer.pal(n = 12, name = "Paired")[12] #brown | |
col7 <- brewer.pal(n = 8, name = "Dark2")[8] #grey | |
col8 <- brewer.pal(n = 8, name = "Accent")[6] #dark pink | |
col20 <- col8 | |
col19 <- col7 | |
col18 <- col6 | |
col17 <- col5 | |
col16 <- col4 | |
col15 <- col3 | |
col14 <- col2 | |
col13 <- col1 | |
col12 <- brewer.pal(n = 11, name = "BrBG")[9] #SoftBl | |
col9 <- brewer.pal(n = 11, name = "RdBu")[11] #DarkBl | |
col11 <- brewer.pal(n = 11, name = "PiYG")[1] #Maroon | |
col10 <- brewer.pal(n = 11, name = "PiYG")[11] #DarkGrn | |
points3d(set1[1:round(nrow(set1)*(input$pts/100),0),1], | |
set1[1:round(nrow(set1)*(input$pts/100),0),2], | |
set1[1:round(nrow(set1)*(input$pts/100),0),3], | |
size = 1.25,col=col1) | |
points3d(set2[1:round(nrow(set2)*(input$pts/100),0),1], | |
set2[1:round(nrow(set2)*(input$pts/100),0),2], | |
set2[1:round(nrow(set2)*(input$pts/100),0),3], | |
size = 1.25,col=col2) | |
points3d(set3[1:round(nrow(set3)*(input$pts/100),0),1], | |
set3[1:round(nrow(set3)*(input$pts/100),0),2], | |
set3[1:round(nrow(set3)*(input$pts/100),0),3], | |
size = 1.25,col=col3) | |
points3d(set4[1:round(nrow(set4)*(input$pts/100),0),1], | |
set4[1:round(nrow(set4)*(input$pts/100),0),2], | |
set4[1:round(nrow(set4)*(input$pts/100),0),3], | |
size = 1.25,col=col4) | |
points3d(set5[1:round(nrow(set5)*(input$pts/100),0),1], | |
set5[1:round(nrow(set5)*(input$pts/100),0),2], | |
set5[1:round(nrow(set5)*(input$pts/100),0),3], | |
size = 1.25,col=col5) | |
points3d(set6[1:round(nrow(set6)*(input$pts/100),0),1], | |
set6[1:round(nrow(set6)*(input$pts/100),0),2], | |
set6[1:round(nrow(set6)*(input$pts/100),0),3], | |
size = 1.25,col=col6) | |
points3d(set7[1:round(nrow(set7)*(input$pts/100),0),1], | |
set7[1:round(nrow(set7)*(input$pts/100),0),2], | |
set7[1:round(nrow(set7)*(input$pts/100),0),3], | |
size = 1.25,col=col7) | |
points3d(set8[1:round(nrow(set8)*(input$pts/100),0),1], | |
set8[1:round(nrow(set8)*(input$pts/100),0),2], | |
set8[1:round(nrow(set8)*(input$pts/100),0),3], | |
size = 1.25,col=col8) | |
points3d(set9[1:round(nrow(set9)*(input$pts/100),0),1], | |
set9[1:round(nrow(set9)*(input$pts/100),0),2], | |
set9[1:round(nrow(set9)*(input$pts/100),0),3], | |
size = 1.25,col=col9) | |
points3d(set10[1:round(nrow(set10)*(input$pts/100),0),1], | |
set10[1:round(nrow(set10)*(input$pts/100),0),2], | |
set10[1:round(nrow(set10)*(input$pts/100),0),3], | |
size = 1.25,col=col10) | |
points3d(set11[1:round(nrow(set11)*(input$pts/100),0),1], | |
set11[1:round(nrow(set11)*(input$pts/100),0),2], | |
set11[1:round(nrow(set11)*(input$pts/100),0),3], | |
size = 1.25,col=col11) | |
points3d(set12[1:round(nrow(set12)*(input$pts/100),0),1], | |
set12[1:round(nrow(set12)*(input$pts/100),0),2], | |
set12[1:round(nrow(set12)*(input$pts/100),0),3], | |
size = 1.25,col=col12) | |
points3d(set13[1:round(nrow(set13)*(input$pts/100),0),1], | |
set13[1:round(nrow(set13)*(input$pts/100),0),2], | |
set13[1:round(nrow(set13)*(input$pts/100),0),3], | |
size = 1.25,col=col13) | |
points3d(set14[1:round(nrow(set14)*(input$pts/100),0),1], | |
set14[1:round(nrow(set14)*(input$pts/100),0),2], | |
set14[1:round(nrow(set14)*(input$pts/100),0),3], | |
size = 1.25,col=col14) | |
points3d(set15[1:round(nrow(set15)*(input$pts/100),0),1], | |
set15[1:round(nrow(set15)*(input$pts/100),0),2], | |
set15[1:round(nrow(set15)*(input$pts/100),0),3], | |
size = 1.25,col=col15) | |
points3d(set16[1:round(nrow(set16)*(input$pts/100),0),1], | |
set16[1:round(nrow(set16)*(input$pts/100),0),2], | |
set16[1:round(nrow(set16)*(input$pts/100),0),3], | |
size = 1.25,col=col16) | |
points3d(set17[1:round(nrow(set17)*(input$pts/100),0),1], | |
set17[1:round(nrow(set17)*(input$pts/100),0),2], | |
set17[1:round(nrow(set17)*(input$pts/100),0),3], | |
size = 1.25,col=col17) | |
points3d(set18[1:round(nrow(set18)*(input$pts/100),0),1], | |
set18[1:round(nrow(set18)*(input$pts/100),0),2], | |
set18[1:round(nrow(set18)*(input$pts/100),0),3], | |
size = 1.25,col=col18) | |
points3d(set19[1:round(nrow(set19)*(input$pts/100),0),1], | |
set19[1:round(nrow(set19)*(input$pts/100),0),2], | |
set19[1:round(nrow(set19)*(input$pts/100),0),3], | |
size = 1.25,col=col19) | |
points3d(set20[1:round(nrow(set20)*(input$pts/100),0),1], | |
set20[1:round(nrow(set20)*(input$pts/100),0),2], | |
set20[1:round(nrow(set20)*(input$pts/100),0),3], | |
size = 1.25,col=col20) | |
} | |
points3d(loci[,2],loci[,3],loci[,4], size=6,col="red") | |
rglwidget() | |
}) #Close withProgress | |
}) #Close withProgress | |
}) | |
}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ---------------------------------------- | |
# App Title: Chaos Game -- 3 Dimensions | |
# Author: Jimmy Doi | |
# ---------------------------------------- | |
options(rgl.useNULL=TRUE) | |
if (!require("shiny")) install.packages("shiny") | |
if (!require("shinyBS")) install.packages("shinyBS") | |
if (!require("shinyRGL")) install.packages("shinyRGL") | |
if (!require("devtools")) install.packages("devtools") | |
if (!require("RColorBrewer")) install.packages("RColorBrewer") | |
if (!require("rgl")) install.packages("rgl") | |
if (!require("rglwidget")) install.packages("rglwidget") | |
library(shiny) | |
library(shinyBS) | |
library(shinyRGL) | |
library(rgl) | |
library(rglwidget) | |
shinyUI(fluidPage( | |
h3("Chaos Game: Three Dimensions"), | |
div("Note: Please adjust width of browser if only one column is visible.",br(), | |
span(HTML("<a href='http://shiny.stat.calpoly.edu/ChaosGame2D' style='color: #DC143C' | |
target='_blank'>[Click here for another Shiny app on the Chaos Game]</a>")), | |
style = "font-size: 9pt;color:teal"),br(), | |
p("In the 3 dimensional version of the ", HTML("<a href='http://mathworld.wolfram.com/ChaosGame.html'> | |
Chaos Game</a>"), | |
"we start with a regular polyhedron and mark selected | |
points which will typically be the vertices. These points will be called", | |
tags$i("endpoints"), "and will be marked with red squares. The game begins by randomly choosing a | |
starting point and one of the endpoints. | |
Mark a new point at a fixed distance ratio from the starting point to the endpoint (e.g., | |
halfway to the endpoint). Select another endpoint at random and, | |
with the most recently created point, repeat the process to generate the next point | |
and continue. By applying the right distance ratio the resulting set of points can converge | |
to a beautiful image known as a", HTML("<i>fractal</i>."),"For each polyhedron the required | |
distance ratio to yield a fractal will be provided, | |
but try different settings to see what other patterns may arise!" | |
), | |
br(), | |
# Sidebar with a slider input for number of points | |
sidebarPanel( | |
tags$head(tags$link(rel = "icon", type = "image/x-icon", href = | |
"https://webresource.its.calpoly.edu/cpwebtemplate/5.0.1/common/images_html/favicon.ico")), | |
tags$title("Chaos Game -- 3 Dimensions"), | |
selectizeInput('shape', h5('Shape'), choices = list( | |
"Three Dimensions" = c(`Tetrahedron` = 'tetra', | |
`Cube` = 'cube', | |
`Dodecahedron` = 'dodec') | |
), selected = 'tetra'),br(), | |
conditionalPanel( | |
condition = "input.shape=='tetra'", | |
sliderInput("dist.tetra", | |
label = h5("Distance ratio to endpoint:"), | |
min = 0.01, max = .99, value = .50, step=.01), | |
div("For", tags$b("Tetrahedron"), "default value is 0.50", | |
style = "font-size: 9.5pt;color:teal",align="left") | |
), | |
conditionalPanel( | |
condition = "input.shape=='cube'", | |
sliderInput("dist.cube", | |
label = h5("Distance ratio to endpoint:"), | |
min = 0.01, max = .99, value = .67, step=.01), | |
div("For", tags$b("Cube"), "default value is 0.67 (2/3)", | |
style = "font-size: 9.5pt;color:teal",align="left") | |
), | |
conditionalPanel( | |
condition = "input.shape=='dodec'", | |
sliderInput("dist.dodec", | |
label = h5("Distance ratio to endpoint:"), | |
min = 0.01, max = .99, value = .72, step=.01), | |
div("For", tags$b("Dodecahedron"), "default value is 0.72", | |
style = "font-size: 9.5pt;color:teal",align="left") | |
), | |
br(),br(), | |
sliderInput("pts", | |
label = h5("Percentage of sequence:"), | |
min = 10, | |
max = 100, | |
step = 10, | |
value = 100),br(), | |
# div(bsActionButton("gen", label = "Randomize"),align="right"), | |
div(bsButton("gen", label = "Randomize"),align="right"), | |
div("Click", tags$b("Randomize")," to re-randomize outcomes based on current settings.", | |
style = "font-size: 9.5pt;color:teal",align="right"),br(), | |
br(), br(), br(), br(), | |
div("Shiny app by", | |
a(href="http://statweb.calpoly.edu/jdoi/",target="_blank", | |
"Jimmy Doi"),align="right", style = "font-size: 8pt"), | |
div("Base R code by", | |
a(href="http://statweb.calpoly.edu/jdoi/",target="_blank", | |
"Jimmy Doi"),align="right", style = "font-size: 8pt"), | |
div("Shiny source files:", | |
a(href="https://gist.github.com/calpolystat/1d63ae1c5c5e3a4a5969", | |
target="_blank","GitHub Gist"),align="right", style = "font-size: 8pt"), | |
div(a(href="http://www.statistics.calpoly.edu/shiny",target="_blank", | |
"Cal Poly Statistics Dept Shiny Series"),align="right", style = "font-size: 8pt") | |
), | |
# Show the generated 3d scatterplot | |
mainPanel( | |
rglwidgetOutput("sctPlot"), | |
div(HTML("<hr style='height: 2px; color: #BDBDBD; background-color: #D9D9D9; border: none; align:center'>"), | |
p(tags$b("NOTE:"), "In the image above all points nearest a particular vertex/endpoint are shown in a common color. | |
Rotate the image by clicking your mouse within the plot and dragging the cursor. Also, use | |
the scroll wheel of the mouse to zoom in/out of the image. Set the sequence percentage to 100% | |
and slightly zoom out to improve image resolution.",align="center"),align="center"),br(),br(), | |
p("For a better understanding of the chaos game, please", | |
HTML("<a href='https://calpolystat.shinyapps.io/ChaosGame2D' | |
target='_blank'>click here</a>"),"to access the 2 dimensional version of the app. Use the animation in the 'Initial Sequence' | |
plot to see a step-by-step progression of the game." | |
,align="center") | |
) | |
) #fluidPage | |
) #shinyUI |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment