Skip to content

Instantly share code, notes, and snippets.

@capicue
Last active Dec 10, 2015
Embed
What would you like to do?
Hexagons 2

drag, zoom, pan!

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<script type="text/javascript" src="Main.js"></script>
<link rel="stylesheet" href="main.css" type="text/css" />
<title>Sites</title>
</head>
<body>
<script type="text/javascript">
var app = Elm.fullscreen(Elm.Main);
</script>
</body>
</html>
#app {
position: fixed;
top: 0;
left: 0;
}
var Elm = Elm || { Native: {} };
Elm.Native.Array = {};
Elm.Native.Array.make = function(localRuntime) {
localRuntime.Native = localRuntime.Native || {};
localRuntime.Native.Array = localRuntime.Native.Array || {};
if (localRuntime.Native.Array.values)
{
return localRuntime.Native.Array.values;
}
if ('values' in Elm.Native.Array)
{
return localRuntime.Native.Array.values = Elm.Native.Array.values;
}
var List = Elm.Native.List.make(localRuntime);
// A RRB-Tree has two distinct data types.
// Leaf -> "height" is always 0
// "table" is an array of elements
// Node -> "height" is always greater than 0
// "table" is an array of child nodes
// "lengths" is an array of accumulated lengths of the child nodes
// M is the maximal table size. 32 seems fast. E is the allowed increase
// of search steps when concatting to find an index. Lower values will
// decrease balancing, but will increase search steps.
var M = 32;
var E = 2;
// An empty array.
var empty = {
ctor: '_Array',
height: 0,
table: []
};
function get(i, array)
{
if (i < 0 || i >= length(array))
{
throw new Error(
'Index ' + i + ' is out of range. Check the length of ' +
'your array first or use getMaybe or getWithDefault.');
}
return unsafeGet(i, array);
}
function unsafeGet(i, array)
{
for (var x = array.height; x > 0; x--)
{
var slot = i >> (x * 5);
while (array.lengths[slot] <= i)
{
slot++;
}
if (slot > 0)
{
i -= array.lengths[slot - 1];
}
array = array.table[slot];
}
return array.table[i];
}
// Sets the value at the index i. Only the nodes leading to i will get
// copied and updated.
function set(i, item, array)
{
if (i < 0 || length(array) <= i)
{
return array;
}
return unsafeSet(i, item, array);
}
function unsafeSet(i, item, array)
{
array = nodeCopy(array);
if (array.height === 0)
{
array.table[i] = item;
}
else
{
var slot = getSlot(i, array);
if (slot > 0)
{
i -= array.lengths[slot - 1];
}
array.table[slot] = unsafeSet(i, item, array.table[slot]);
}
return array;
}
function initialize(len, f)
{
if (len <= 0)
{
return empty;
}
var h = Math.floor( Math.log(len) / Math.log(M) );
return initialize_(f, h, 0, len);
}
function initialize_(f, h, from, to)
{
if (h === 0)
{
var table = new Array((to - from) % (M + 1));
for (var i = 0; i < table.length; i++)
{
table[i] = f(from + i);
}
return {
ctor: '_Array',
height: 0,
table: table
};
}
var step = Math.pow(M, h);
var table = new Array(Math.ceil((to - from) / step));
var lengths = new Array(table.length);
for (var i = 0; i < table.length; i++)
{
table[i] = initialize_(f, h - 1, from + (i * step), Math.min(from + ((i + 1) * step), to));
lengths[i] = length(table[i]) + (i > 0 ? lengths[i-1] : 0);
}
return {
ctor: '_Array',
height: h,
table: table,
lengths: lengths
};
}
function fromList(list)
{
if (list === List.Nil)
{
return empty;
}
// Allocate M sized blocks (table) and write list elements to it.
var table = new Array(M);
var nodes = [];
var i = 0;
while (list.ctor !== '[]')
{
table[i] = list._0;
list = list._1;
i++;
// table is full, so we can push a leaf containing it into the
// next node.
if (i === M)
{
var leaf = {
ctor: '_Array',
height: 0,
table: table
};
fromListPush(leaf, nodes);
table = new Array(M);
i = 0;
}
}
// Maybe there is something left on the table.
if (i > 0)
{
var leaf = {
ctor: '_Array',
height: 0,
table: table.splice(0, i)
};
fromListPush(leaf, nodes);
}
// Go through all of the nodes and eventually push them into higher nodes.
for (var h = 0; h < nodes.length - 1; h++)
{
if (nodes[h].table.length > 0)
{
fromListPush(nodes[h], nodes);
}
}
var head = nodes[nodes.length - 1];
if (head.height > 0 && head.table.length === 1)
{
return head.table[0];
}
else
{
return head;
}
}
// Push a node into a higher node as a child.
function fromListPush(toPush, nodes)
{
var h = toPush.height;
// Maybe the node on this height does not exist.
if (nodes.length === h)
{
var node = {
ctor: '_Array',
height: h + 1,
table: [],
lengths: []
};
nodes.push(node);
}
nodes[h].table.push(toPush);
var len = length(toPush);
if (nodes[h].lengths.length > 0)
{
len += nodes[h].lengths[nodes[h].lengths.length - 1];
}
nodes[h].lengths.push(len);
if (nodes[h].table.length === M)
{
fromListPush(nodes[h], nodes);
nodes[h] = {
ctor: '_Array',
height: h + 1,
table: [],
lengths: []
};
}
}
// Pushes an item via push_ to the bottom right of a tree.
function push(item, a)
{
var pushed = push_(item, a);
if (pushed !== null)
{
return pushed;
}
var newTree = create(item, a.height);
return siblise(a, newTree);
}
// Recursively tries to push an item to the bottom-right most
// tree possible. If there is no space left for the item,
// null will be returned.
function push_(item, a)
{
// Handle resursion stop at leaf level.
if (a.height === 0)
{
if (a.table.length < M)
{
var newA = {
ctor: '_Array',
height: 0,
table: a.table.slice()
};
newA.table.push(item);
return newA;
}
else
{
return null;
}
}
// Recursively push
var pushed = push_(item, botRight(a));
// There was space in the bottom right tree, so the slot will
// be updated.
if (pushed !== null)
{
var newA = nodeCopy(a);
newA.table[newA.table.length - 1] = pushed;
newA.lengths[newA.lengths.length - 1]++;
return newA;
}
// When there was no space left, check if there is space left
// for a new slot with a tree which contains only the item
// at the bottom.
if (a.table.length < M)
{
var newSlot = create(item, a.height - 1);
var newA = nodeCopy(a);
newA.table.push(newSlot);
newA.lengths.push(newA.lengths[newA.lengths.length - 1] + length(newSlot));
return newA;
}
else
{
return null;
}
}
// Converts an array into a list of elements.
function toList(a)
{
return toList_(List.Nil, a);
}
function toList_(list, a)
{
for (var i = a.table.length - 1; i >= 0; i--)
{
list =
a.height === 0
? List.Cons(a.table[i], list)
: toList_(list, a.table[i]);
}
return list;
}
// Maps a function over the elements of an array.
function map(f, a)
{
var newA = {
ctor: '_Array',
height: a.height,
table: new Array(a.table.length)
};
if (a.height > 0)
{
newA.lengths = a.lengths;
}
for (var i = 0; i < a.table.length; i++)
{
newA.table[i] =
a.height === 0
? f(a.table[i])
: map(f, a.table[i]);
}
return newA;
}
// Maps a function over the elements with their index as first argument.
function indexedMap(f, a)
{
return indexedMap_(f, a, 0);
}
function indexedMap_(f, a, from)
{
var newA = {
ctor: '_Array',
height: a.height,
table: new Array(a.table.length)
};
if (a.height > 0)
{
newA.lengths = a.lengths;
}
for (var i = 0; i < a.table.length; i++)
{
newA.table[i] =
a.height === 0
? A2(f, from + i, a.table[i])
: indexedMap_(f, a.table[i], i == 0 ? from : from + a.lengths[i - 1]);
}
return newA;
}
function foldl(f, b, a)
{
if (a.height === 0)
{
for (var i = 0; i < a.table.length; i++)
{
b = A2(f, a.table[i], b);
}
}
else
{
for (var i = 0; i < a.table.length; i++)
{
b = foldl(f, b, a.table[i]);
}
}
return b;
}
function foldr(f, b, a)
{
if (a.height === 0)
{
for (var i = a.table.length; i--; )
{
b = A2(f, a.table[i], b);
}
}
else
{
for (var i = a.table.length; i--; )
{
b = foldr(f, b, a.table[i]);
}
}
return b;
}
// TODO: currently, it slices the right, then the left. This can be
// optimized.
function slice(from, to, a)
{
if (from < 0)
{
from += length(a);
}
if (to < 0)
{
to += length(a);
}
return sliceLeft(from, sliceRight(to, a));
}
function sliceRight(to, a)
{
if (to === length(a))
{
return a;
}
// Handle leaf level.
if (a.height === 0)
{
var newA = { ctor:'_Array', height:0 };
newA.table = a.table.slice(0, to);
return newA;
}
// Slice the right recursively.
var right = getSlot(to, a);
var sliced = sliceRight(to - (right > 0 ? a.lengths[right - 1] : 0), a.table[right]);
// Maybe the a node is not even needed, as sliced contains the whole slice.
if (right === 0)
{
return sliced;
}
// Create new node.
var newA = {
ctor: '_Array',
height: a.height,
table: a.table.slice(0, right),
lengths: a.lengths.slice(0, right)
};
if (sliced.table.length > 0)
{
newA.table[right] = sliced;
newA.lengths[right] = length(sliced) + (right > 0 ? newA.lengths[right - 1] : 0);
}
return newA;
}
function sliceLeft(from, a)
{
if (from === 0)
{
return a;
}
// Handle leaf level.
if (a.height === 0)
{
var newA = { ctor:'_Array', height:0 };
newA.table = a.table.slice(from, a.table.length + 1);
return newA;
}
// Slice the left recursively.
var left = getSlot(from, a);
var sliced = sliceLeft(from - (left > 0 ? a.lengths[left - 1] : 0), a.table[left]);
// Maybe the a node is not even needed, as sliced contains the whole slice.
if (left === a.table.length - 1)
{
return sliced;
}
// Create new node.
var newA = {
ctor: '_Array',
height: a.height,
table: a.table.slice(left, a.table.length + 1),
lengths: new Array(a.table.length - left)
};
newA.table[0] = sliced;
var len = 0;
for (var i = 0; i < newA.table.length; i++)
{
len += length(newA.table[i]);
newA.lengths[i] = len;
}
return newA;
}
// Appends two trees.
function append(a,b)
{
if (a.table.length === 0)
{
return b;
}
if (b.table.length === 0)
{
return a;
}
var c = append_(a, b);
// Check if both nodes can be crunshed together.
if (c[0].table.length + c[1].table.length <= M)
{
if (c[0].table.length === 0)
{
return c[1];
}
if (c[1].table.length === 0)
{
return c[0];
}
// Adjust .table and .lengths
c[0].table = c[0].table.concat(c[1].table);
if (c[0].height > 0)
{
var len = length(c[0]);
for (var i = 0; i < c[1].lengths.length; i++)
{
c[1].lengths[i] += len;
}
c[0].lengths = c[0].lengths.concat(c[1].lengths);
}
return c[0];
}
if (c[0].height > 0)
{
var toRemove = calcToRemove(a, b);
if (toRemove > E)
{
c = shuffle(c[0], c[1], toRemove);
}
}
return siblise(c[0], c[1]);
}
// Returns an array of two nodes; right and left. One node _may_ be empty.
function append_(a, b)
{
if (a.height === 0 && b.height === 0)
{
return [a, b];
}
if (a.height !== 1 || b.height !== 1)
{
if (a.height === b.height)
{
a = nodeCopy(a);
b = nodeCopy(b);
var appended = append_(botRight(a), botLeft(b));
insertRight(a, appended[1]);
insertLeft(b, appended[0]);
}
else if (a.height > b.height)
{
a = nodeCopy(a);
var appended = append_(botRight(a), b);
insertRight(a, appended[0]);
b = parentise(appended[1], appended[1].height + 1);
}
else
{
b = nodeCopy(b);
var appended = append_(a, botLeft(b));
var left = appended[0].table.length === 0 ? 0 : 1;
var right = left === 0 ? 1 : 0;
insertLeft(b, appended[left]);
a = parentise(appended[right], appended[right].height + 1);
}
}
// Check if balancing is needed and return based on that.
if (a.table.length === 0 || b.table.length === 0)
{
return [a, b];
}
var toRemove = calcToRemove(a, b);
if (toRemove <= E)
{
return [a, b];
}
return shuffle(a, b, toRemove);
}
// Helperfunctions for append_. Replaces a child node at the side of the parent.
function insertRight(parent, node)
{
var index = parent.table.length - 1;
parent.table[index] = node;
parent.lengths[index] = length(node);
parent.lengths[index] += index > 0 ? parent.lengths[index - 1] : 0;
}
function insertLeft(parent, node)
{
if (node.table.length > 0)
{
parent.table[0] = node;
parent.lengths[0] = length(node);
var len = length(parent.table[0]);
for (var i = 1; i < parent.lengths.length; i++)
{
len += length(parent.table[i]);
parent.lengths[i] = len;
}
}
else
{
parent.table.shift();
for (var i = 1; i < parent.lengths.length; i++)
{
parent.lengths[i] = parent.lengths[i] - parent.lengths[0];
}
parent.lengths.shift();
}
}
// Returns the extra search steps for E. Refer to the paper.
function calcToRemove(a, b)
{
var subLengths = 0;
for (var i = 0; i < a.table.length; i++)
{
subLengths += a.table[i].table.length;
}
for (var i = 0; i < b.table.length; i++)
{
subLengths += b.table[i].table.length;
}
var toRemove = a.table.length + b.table.length;
return toRemove - (Math.floor((subLengths - 1) / M) + 1);
}
// get2, set2 and saveSlot are helpers for accessing elements over two arrays.
function get2(a, b, index)
{
return index < a.length
? a[index]
: b[index - a.length];
}
function set2(a, b, index, value)
{
if (index < a.length)
{
a[index] = value;
}
else
{
b[index - a.length] = value;
}
}
function saveSlot(a, b, index, slot)
{
set2(a.table, b.table, index, slot);
var l = (index === 0 || index === a.lengths.length)
? 0
: get2(a.lengths, a.lengths, index - 1);
set2(a.lengths, b.lengths, index, l + length(slot));
}
// Creates a node or leaf with a given length at their arrays for perfomance.
// Is only used by shuffle.
function createNode(h, length)
{
if (length < 0)
{
length = 0;
}
var a = {
ctor: '_Array',
height: h,
table: new Array(length)
};
if (h > 0)
{
a.lengths = new Array(length);
}
return a;
}
// Returns an array of two balanced nodes.
function shuffle(a, b, toRemove)
{
var newA = createNode(a.height, Math.min(M, a.table.length + b.table.length - toRemove));
var newB = createNode(a.height, newA.table.length - (a.table.length + b.table.length - toRemove));
// Skip the slots with size M. More precise: copy the slot references
// to the new node
var read = 0;
while (get2(a.table, b.table, read).table.length % M === 0)
{
set2(newA.table, newB.table, read, get2(a.table, b.table, read));
set2(newA.lengths, newB.lengths, read, get2(a.lengths, b.lengths, read));
read++;
}
// Pulling items from left to right, caching in a slot before writing
// it into the new nodes.
var write = read;
var slot = new createNode(a.height - 1, 0);
var from = 0;
// If the current slot is still containing data, then there will be at
// least one more write, so we do not break this loop yet.
while (read - write - (slot.table.length > 0 ? 1 : 0) < toRemove)
{
// Find out the max possible items for copying.
var source = get2(a.table, b.table, read);
var to = Math.min(M - slot.table.length, source.table.length);
// Copy and adjust size table.
slot.table = slot.table.concat(source.table.slice(from, to));
if (slot.height > 0)
{
var len = slot.lengths.length;
for (var i = len; i < len + to - from; i++)
{
slot.lengths[i] = length(slot.table[i]);
slot.lengths[i] += (i > 0 ? slot.lengths[i - 1] : 0);
}
}
from += to;
// Only proceed to next slots[i] if the current one was
// fully copied.
if (source.table.length <= to)
{
read++; from = 0;
}
// Only create a new slot if the current one is filled up.
if (slot.table.length === M)
{
saveSlot(newA, newB, write, slot);
slot = createNode(a.height - 1, 0);
write++;
}
}
// Cleanup after the loop. Copy the last slot into the new nodes.
if (slot.table.length > 0)
{
saveSlot(newA, newB, write, slot);
write++;
}
// Shift the untouched slots to the left
while (read < a.table.length + b.table.length )
{
saveSlot(newA, newB, write, get2(a.table, b.table, read));
read++;
write++;
}
return [newA, newB];
}
// Navigation functions
function botRight(a)
{
return a.table[a.table.length - 1];
}
function botLeft(a)
{
return a.table[0];
}
// Copies a node for updating. Note that you should not use this if
// only updating only one of "table" or "lengths" for performance reasons.
function nodeCopy(a)
{
var newA = {
ctor: '_Array',
height: a.height,
table: a.table.slice()
};
if (a.height > 0)
{
newA.lengths = a.lengths.slice();
}
return newA;
}
// Returns how many items are in the tree.
function length(array)
{
if (array.height === 0)
{
return array.table.length;
}
else
{
return array.lengths[array.lengths.length - 1];
}
}
// Calculates in which slot of "table" the item probably is, then
// find the exact slot via forward searching in "lengths". Returns the index.
function getSlot(i, a)
{
var slot = i >> (5 * a.height);
while (a.lengths[slot] <= i)
{
slot++;
}
return slot;
}
// Recursively creates a tree with a given height containing
// only the given item.
function create(item, h)
{
if (h === 0)
{
return {
ctor: '_Array',
height: 0,
table: [item]
};
}
return {
ctor: '_Array',
height: h,
table: [create(item, h - 1)],
lengths: [1]
};
}
// Recursively creates a tree that contains the given tree.
function parentise(tree, h)
{
if (h === tree.height)
{
return tree;
}
return {
ctor: '_Array',
height: h,
table: [parentise(tree, h - 1)],
lengths: [length(tree)]
};
}
// Emphasizes blood brotherhood beneath two trees.
function siblise(a, b)
{
return {
ctor: '_Array',
height: a.height + 1,
table: [a, b],
lengths: [length(a), length(a) + length(b)]
};
}
function toJSArray(a)
{
var jsArray = new Array(length(a));
toJSArray_(jsArray, 0, a);
return jsArray;
}
function toJSArray_(jsArray, i, a)
{
for (var t = 0; t < a.table.length; t++)
{
if (a.height === 0)
{
jsArray[i + t] = a.table[t];
}
else
{
var inc = t === 0 ? 0 : a.lengths[t - 1];
toJSArray_(jsArray, i + inc, a.table[t]);
}
}
}
function fromJSArray(jsArray)
{
if (jsArray.length === 0)
{
return empty;
}
var h = Math.floor(Math.log(jsArray.length) / Math.log(M));
return fromJSArray_(jsArray, h, 0, jsArray.length);
}
function fromJSArray_(jsArray, h, from, to)
{
if (h === 0)
{
return {
ctor: '_Array',
height: 0,
table: jsArray.slice(from, to)
};
}
var step = Math.pow(M, h);
var table = new Array(Math.ceil((to - from) / step));
var lengths = new Array(table.length);
for (var i = 0; i < table.length; i++)
{
table[i] = fromJSArray_(jsArray, h - 1, from + (i * step), Math.min(from + ((i + 1) * step), to));
lengths[i] = length(table[i]) + (i > 0 ? lengths[i - 1] : 0);
}
return {
ctor: '_Array',
height: h,
table: table,
lengths: lengths
};
}
Elm.Native.Array.values = {
empty: empty,
fromList: fromList,
toList: toList,
initialize: F2(initialize),
append: F2(append),
push: F2(push),
slice: F3(slice),
get: F2(get),
set: F3(set),
map: F2(map),
indexedMap: F2(indexedMap),
foldl: F3(foldl),
foldr: F3(foldr),
length: length,
toJSArray: toJSArray,
fromJSArray: fromJSArray
};
return localRuntime.Native.Array.values = Elm.Native.Array.values;
};
Elm.Native.Basics = {};
Elm.Native.Basics.make = function(localRuntime) {
localRuntime.Native = localRuntime.Native || {};
localRuntime.Native.Basics = localRuntime.Native.Basics || {};
if (localRuntime.Native.Basics.values)
{
return localRuntime.Native.Basics.values;
}
var Utils = Elm.Native.Utils.make(localRuntime);
function div(a, b)
{
return (a / b) | 0;
}
function rem(a, b)
{
return a % b;
}
function mod(a, b)
{
if (b === 0)
{
throw new Error('Cannot perform mod 0. Division by zero error.');
}
var r = a % b;
var m = a === 0 ? 0 : (b > 0 ? (a >= 0 ? r : r + b) : -mod(-a, -b));
return m === b ? 0 : m;
}
function logBase(base, n)
{
return Math.log(n) / Math.log(base);
}
function negate(n)
{
return -n;
}
function abs(n)
{
return n < 0 ? -n : n;
}
function min(a, b)
{
return Utils.cmp(a, b) < 0 ? a : b;
}
function max(a, b)
{
return Utils.cmp(a, b) > 0 ? a : b;
}
function clamp(lo, hi, n)
{
return Utils.cmp(n, lo) < 0 ? lo : Utils.cmp(n, hi) > 0 ? hi : n;
}
function xor(a, b)
{
return a !== b;
}
function not(b)
{
return !b;
}
function isInfinite(n)
{
return n === Infinity || n === -Infinity;
}
function truncate(n)
{
return n | 0;
}
function degrees(d)
{
return d * Math.PI / 180;
}
function turns(t)
{
return 2 * Math.PI * t;
}
function fromPolar(point)
{
var r = point._0;
var t = point._1;
return Utils.Tuple2(r * Math.cos(t), r * Math.sin(t));
}
function toPolar(point)
{
var x = point._0;
var y = point._1;
return Utils.Tuple2(Math.sqrt(x * x + y * y), Math.atan2(y, x));
}
return localRuntime.Native.Basics.values = {
div: F2(div),
rem: F2(rem),
mod: F2(mod),
pi: Math.PI,
e: Math.E,
cos: Math.cos,
sin: Math.sin,
tan: Math.tan,
acos: Math.acos,
asin: Math.asin,
atan: Math.atan,
atan2: F2(Math.atan2),
degrees: degrees,
turns: turns,
fromPolar: fromPolar,
toPolar: toPolar,
sqrt: Math.sqrt,
logBase: F2(logBase),
negate: negate,
abs: abs,
min: F2(min),
max: F2(max),
clamp: F3(clamp),
compare: Utils.compare,
xor: F2(xor),
not: not,
truncate: truncate,
ceiling: Math.ceil,
floor: Math.floor,
round: Math.round,
toFloat: function(x) { return x; },
isNaN: isNaN,
isInfinite: isInfinite
};
};
Elm.Native.Port = {};
Elm.Native.Port.make = function(localRuntime) {
localRuntime.Native = localRuntime.Native || {};
localRuntime.Native.Port = localRuntime.Native.Port || {};
if (localRuntime.Native.Port.values)
{
return localRuntime.Native.Port.values;
}
var NS;
// INBOUND
function inbound(name, type, converter)
{
if (!localRuntime.argsTracker[name])
{
throw new Error(
'Port Error:\n' +
'No argument was given for the port named \'' + name + '\' with type:\n\n' +
' ' + type.split('\n').join('\n ') + '\n\n' +
'You need to provide an initial value!\n\n' +
'Find out more about ports here <http://elm-lang.org/learn/Ports.elm>'
);
}
var arg = localRuntime.argsTracker[name];
arg.used = true;
return jsToElm(name, type, converter, arg.value);
}
function inboundSignal(name, type, converter)
{
var initialValue = inbound(name, type, converter);
if (!NS)
{
NS = Elm.Native.Signal.make(localRuntime);
}
var signal = NS.input('inbound-port-' + name, initialValue);
function send(jsValue)
{
var elmValue = jsToElm(name, type, converter, jsValue);
setTimeout(function() {
localRuntime.notify(signal.id, elmValue);
}, 0);
}
localRuntime.ports[name] = { send: send };
return signal;
}
function jsToElm(name, type, converter, value)
{
try
{
return converter(value);
}
catch(e)
{
throw new Error(
'Port Error:\n' +
'Regarding the port named \'' + name + '\' with type:\n\n' +
' ' + type.split('\n').join('\n ') + '\n\n' +
'You just sent the value:\n\n' +
' ' + JSON.stringify(value) + '\n\n' +
'but it cannot be converted to the necessary type.\n' +
e.message
);
}
}
// OUTBOUND
function outbound(name, converter, elmValue)
{
localRuntime.ports[name] = converter(elmValue);
}
function outboundSignal(name, converter, signal)
{
var subscribers = [];
function subscribe(handler)
{
subscribers.push(handler);
}
function unsubscribe(handler)
{
subscribers.pop(subscribers.indexOf(handler));
}
function notify(elmValue)
{
var jsValue = converter(elmValue);
var len = subscribers.length;
for (var i = 0; i < len; ++i)
{
subscribers[i](jsValue);
}
}
if (!NS)
{
NS = Elm.Native.Signal.make(localRuntime);
}
NS.output('outbound-port-' + name, notify, signal);
localRuntime.ports[name] = {
subscribe: subscribe,
unsubscribe: unsubscribe
};
return signal;
}
return localRuntime.Native.Port.values = {
inbound: inbound,
outbound: outbound,
inboundSignal: inboundSignal,
outboundSignal: outboundSignal
};
};
if (!Elm.fullscreen) {
(function() {
'use strict';
var Display = {
FULLSCREEN: 0,
COMPONENT: 1,
NONE: 2
};
Elm.fullscreen = function(module, args)
{
var container = document.createElement('div');
document.body.appendChild(container);
return init(Display.FULLSCREEN, container, module, args || {});
};
Elm.embed = function(module, container, args)
{
var tag = container.tagName;
if (tag !== 'DIV')
{
throw new Error('Elm.node must be given a DIV, not a ' + tag + '.');
}
return init(Display.COMPONENT, container, module, args || {});
};
Elm.worker = function(module, args)
{
return init(Display.NONE, {}, module, args || {});
};
function init(display, container, module, args, moduleToReplace)
{
// defining state needed for an instance of the Elm RTS
var inputs = [];
/* OFFSET
* Elm's time traveling debugger lets you pause time. This means
* "now" may be shifted a bit into the past. By wrapping Date.now()
* we can manage this.
*/
var timer = {
programStart: Date.now(),
now: function()
{
return Date.now();
}
};
var updateInProgress = false;
function notify(id, v)
{
if (updateInProgress)
{
throw new Error(
'The notify function has been called synchronously!\n' +
'This can lead to frames being dropped.\n' +
'Definitely report this to <https://github.com/elm-lang/Elm/issues>\n');
}
updateInProgress = true;
var timestep = timer.now();
for (var i = inputs.length; i--; )
{
inputs[i].notify(timestep, id, v);
}
updateInProgress = false;
}
function setTimeout(func, delay)
{
return window.setTimeout(func, delay);
}
var listeners = [];
function addListener(relevantInputs, domNode, eventName, func)
{
domNode.addEventListener(eventName, func);
var listener = {
relevantInputs: relevantInputs,
domNode: domNode,
eventName: eventName,
func: func
};
listeners.push(listener);
}
var argsTracker = {};
for (var name in args)
{
argsTracker[name] = {
value: args[name],
used: false
};
}
// create the actual RTS. Any impure modules will attach themselves to this
// object. This permits many Elm programs to be embedded per document.
var elm = {
notify: notify,
setTimeout: setTimeout,
node: container,
addListener: addListener,
inputs: inputs,
timer: timer,
argsTracker: argsTracker,
ports: {},
isFullscreen: function() { return display === Display.FULLSCREEN; },
isEmbed: function() { return display === Display.COMPONENT; },
isWorker: function() { return display === Display.NONE; }
};
function swap(newModule)
{
removeListeners(listeners);
var div = document.createElement('div');
var newElm = init(display, div, newModule, args, elm);
inputs = [];
return newElm;
}
function dispose()
{
removeListeners(listeners);
inputs = [];
}
var Module = {};
try
{
Module = module.make(elm);
checkInputs(elm);
}
catch (error)
{
if (typeof container.appendChild === "function")
{
container.appendChild(errorNode(error.message));
}
else
{
console.error(error.message);
}
throw error;
}
if (display !== Display.NONE)
{
var graphicsNode = initGraphics(elm, Module);
}
var rootNode = { kids: inputs };
trimDeadNodes(rootNode);
inputs = rootNode.kids;
filterListeners(inputs, listeners);
addReceivers(elm.ports);
if (typeof moduleToReplace !== 'undefined')
{
hotSwap(moduleToReplace, elm);
// rerender scene if graphics are enabled.
if (typeof graphicsNode !== 'undefined')
{
graphicsNode.notify(0, true, 0);
}
}
return {
swap: swap,
ports: elm.ports,
dispose: dispose
};
}
function checkInputs(elm)
{
var argsTracker = elm.argsTracker;
for (var name in argsTracker)
{
if (!argsTracker[name].used)
{
throw new Error(
"Port Error:\nYou provided an argument named '" + name +
"' but there is no corresponding port!\n\n" +
"Maybe add a port '" + name + "' to your Elm module?\n" +
"Maybe remove the '" + name + "' argument from your initialization code in JS?"
);
}
}
}
function errorNode(message)
{
var code = document.createElement('code');
var lines = message.split('\n');
code.appendChild(document.createTextNode(lines[0]));
code.appendChild(document.createElement('br'));
code.appendChild(document.createElement('br'));
for (var i = 1; i < lines.length; ++i)
{
code.appendChild(document.createTextNode('\u00A0 \u00A0 ' + lines[i].replace(/ /g, '\u00A0 ')));
code.appendChild(document.createElement('br'));
}
code.appendChild(document.createElement('br'));
code.appendChild(document.createTextNode('Open the developer console for more details.'));
return code;
}
//// FILTER SIGNALS ////
// TODO: move this code into the signal module and create a function
// Signal.initializeGraph that actually instantiates everything.
function filterListeners(inputs, listeners)
{
loop:
for (var i = listeners.length; i--; )
{
var listener = listeners[i];
for (var j = inputs.length; j--; )
{
if (listener.relevantInputs.indexOf(inputs[j].id) >= 0)
{
continue loop;
}
}
listener.domNode.removeEventListener(listener.eventName, listener.func);
}
}
function removeListeners(listeners)
{
for (var i = listeners.length; i--; )
{
var listener = listeners[i];
listener.domNode.removeEventListener(listener.eventName, listener.func);
}
}
// add receivers for built-in ports if they are defined
function addReceivers(ports)
{
if ('title' in ports)
{
if (typeof ports.title === 'string')
{
document.title = ports.title;
}
else
{
ports.title.subscribe(function(v) { document.title = v; });
}
}
if ('redirect' in ports)
{
ports.redirect.subscribe(function(v) {
if (v.length > 0)
{
window.location = v;
}
});
}
}
// returns a boolean representing whether the node is alive or not.
function trimDeadNodes(node)
{
if (node.isOutput)
{
return true;
}
var liveKids = [];
for (var i = node.kids.length; i--; )
{
var kid = node.kids[i];
if (trimDeadNodes(kid))
{
liveKids.push(kid);
}
}
node.kids = liveKids;
return liveKids.length > 0;
}
//// RENDERING ////
function initGraphics(elm, Module)
{
if (!('main' in Module))
{
throw new Error("'main' is missing! What do I display?!");
}
var signalGraph = Module.main;
// make sure the signal graph is actually a signal & extract the visual model
if (!('notify' in signalGraph))
{
signalGraph = Elm.Signal.make(elm).constant(signalGraph);
}
var initialScene = signalGraph.value;
// Figure out what the render functions should be
var render;
var update;
if (initialScene.ctor === 'Element_elm_builtin')
{
var Element = Elm.Native.Graphics.Element.make(elm);
render = Element.render;
update = Element.updateAndReplace;
}
else
{
var VirtualDom = Elm.Native.VirtualDom.make(elm);
render = VirtualDom.render;
update = VirtualDom.updateAndReplace;
}
// Add the initialScene to the DOM
var container = elm.node;
var node = render(initialScene);
while (container.firstChild)
{
container.removeChild(container.firstChild);
}
container.appendChild(node);
var _requestAnimationFrame =
typeof requestAnimationFrame !== 'undefined'
? requestAnimationFrame
: function(cb) { setTimeout(cb, 1000 / 60); }
;
// domUpdate is called whenever the main Signal changes.
//
// domUpdate and drawCallback implement a small state machine in order
// to schedule only 1 draw per animation frame. This enforces that
// once draw has been called, it will not be called again until the
// next frame.
//
// drawCallback is scheduled whenever
// 1. The state transitions from PENDING_REQUEST to EXTRA_REQUEST, or
// 2. The state transitions from NO_REQUEST to PENDING_REQUEST
//
// Invariants:
// 1. In the NO_REQUEST state, there is never a scheduled drawCallback.
// 2. In the PENDING_REQUEST and EXTRA_REQUEST states, there is always exactly 1
// scheduled drawCallback.
var NO_REQUEST = 0;
var PENDING_REQUEST = 1;
var EXTRA_REQUEST = 2;
var state = NO_REQUEST;
var savedScene = initialScene;
var scheduledScene = initialScene;
function domUpdate(newScene)
{
scheduledScene = newScene;
switch (state)
{
case NO_REQUEST:
_requestAnimationFrame(drawCallback);
state = PENDING_REQUEST;
return;
case PENDING_REQUEST:
state = PENDING_REQUEST;
return;
case EXTRA_REQUEST:
state = PENDING_REQUEST;
return;
}
}
function drawCallback()
{
switch (state)
{
case NO_REQUEST:
// This state should not be possible. How can there be no
// request, yet somehow we are actively fulfilling a
// request?
throw new Error(
'Unexpected draw callback.\n' +
'Please report this to <https://github.com/elm-lang/core/issues>.'
);
case PENDING_REQUEST:
// At this point, we do not *know* that another frame is
// needed, but we make an extra request to rAF just in
// case. It's possible to drop a frame if rAF is called
// too late, so we just do it preemptively.
_requestAnimationFrame(drawCallback);
state = EXTRA_REQUEST;
// There's also stuff we definitely need to draw.
draw();
return;
case EXTRA_REQUEST:
// Turns out the extra request was not needed, so we will
// stop calling rAF. No reason to call it all the time if
// no one needs it.
state = NO_REQUEST;
return;
}
}
function draw()
{
update(elm.node.firstChild, savedScene, scheduledScene);
if (elm.Native.Window)
{
elm.Native.Window.values.resizeIfNeeded();
}
savedScene = scheduledScene;
}
var renderer = Elm.Native.Signal.make(elm).output('main', domUpdate, signalGraph);
// must check for resize after 'renderer' is created so
// that changes show up.
if (elm.Native.Window)
{
elm.Native.Window.values.resizeIfNeeded();
}
return renderer;
}
//// HOT SWAPPING ////
// Returns boolean indicating if the swap was successful.
// Requires that the two signal graphs have exactly the same
// structure.
function hotSwap(from, to)
{
function similar(nodeOld, nodeNew)
{
if (nodeOld.id !== nodeNew.id)
{
return false;
}
if (nodeOld.isOutput)
{
return nodeNew.isOutput;
}
return nodeOld.kids.length === nodeNew.kids.length;
}
function swap(nodeOld, nodeNew)
{
nodeNew.value = nodeOld.value;
return true;
}
var canSwap = depthFirstTraversals(similar, from.inputs, to.inputs);
if (canSwap)
{
depthFirstTraversals(swap, from.inputs, to.inputs);
}
from.node.parentNode.replaceChild(to.node, from.node);
return canSwap;
}
// Returns false if the node operation f ever fails.
function depthFirstTraversals(f, queueOld, queueNew)
{
if (queueOld.length !== queueNew.length)
{
return false;
}
queueOld = queueOld.slice(0);
queueNew = queueNew.slice(0);
var seen = [];
while (queueOld.length > 0 && queueNew.length > 0)
{
var nodeOld = queueOld.pop();
var nodeNew = queueNew.pop();
if (seen.indexOf(nodeOld.id) < 0)
{
if (!f(nodeOld, nodeNew))
{
return false;
}
queueOld = queueOld.concat(nodeOld.kids || []);
queueNew = queueNew.concat(nodeNew.kids || []);
seen.push(nodeOld.id);
}
}
return true;
}
}());
function F2(fun)
{
function wrapper(a) { return function(b) { return fun(a,b); }; }
wrapper.arity = 2;
wrapper.func = fun;
return wrapper;
}
function F3(fun)
{
function wrapper(a) {
return function(b) { return function(c) { return fun(a, b, c); }; };
}
wrapper.arity = 3;
wrapper.func = fun;
return wrapper;
}
function F4(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return fun(a, b, c, d); }; }; };
}
wrapper.arity = 4;
wrapper.func = fun;
return wrapper;
}
function F5(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return function(e) { return fun(a, b, c, d, e); }; }; }; };
}
wrapper.arity = 5;
wrapper.func = fun;
return wrapper;
}
function F6(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return function(e) { return function(f) {
return fun(a, b, c, d, e, f); }; }; }; }; };
}
wrapper.arity = 6;
wrapper.func = fun;
return wrapper;
}
function F7(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return function(e) { return function(f) {
return function(g) { return fun(a, b, c, d, e, f, g); }; }; }; }; }; };
}
wrapper.arity = 7;
wrapper.func = fun;
return wrapper;
}
function F8(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return function(e) { return function(f) {
return function(g) { return function(h) {
return fun(a, b, c, d, e, f, g, h); }; }; }; }; }; }; };
}
wrapper.arity = 8;
wrapper.func = fun;
return wrapper;
}
function F9(fun)
{
function wrapper(a) { return function(b) { return function(c) {
return function(d) { return function(e) { return function(f) {
return function(g) { return function(h) { return function(i) {
return fun(a, b, c, d, e, f, g, h, i); }; }; }; }; }; }; }; };
}
wrapper.arity = 9;
wrapper.func = fun;
return wrapper;
}
function A2(fun, a, b)
{
return fun.arity === 2
? fun.func(a, b)
: fun(a)(b);
}
function A3(fun, a, b, c)
{
return fun.arity === 3
? fun.func(a, b, c)
: fun(a)(b)(c);
}
function A4(fun, a, b, c, d)
{
return fun.arity === 4
? fun.func(a, b, c, d)
: fun(a)(b)(c)(d);
}
function A5(fun, a, b, c, d, e)
{
return fun.arity === 5
? fun.func(a, b, c, d, e)
: fun(a)(b)(c)(d)(e);
}
function A6(fun, a, b, c, d, e, f)
{
return fun.arity === 6
? fun.func(a, b, c, d, e, f)
: fun(a)(b)(c)(d)(e)(f);
}
function A7(fun, a, b, c, d, e, f, g)
{
return fun.arity === 7
? fun.func(a, b, c, d, e, f, g)
: fun(a)(b)(c)(d)(e)(f)(g);
}
function A8(fun, a, b, c, d, e, f, g, h)
{
return fun.arity === 8
? fun.func(a, b, c, d, e, f, g, h)
: fun(a)(b)(c)(d)(e)(f)(g)(h);
}
function A9(fun, a, b, c, d, e, f, g, h, i)
{
return fun.arity === 9
? fun.func(a, b, c, d, e, f, g, h, i)
: fun(a)(b)(c)(d)(e)(f)(g)(h)(i);
}
}
Elm.Native = Elm.Native || {};
Elm.Native.Utils = {};
Elm.Native.Utils.make = function(localRuntime) {
localRuntime.Native = localRuntime.Native || {};
localRuntime.Native.Utils = localRuntime.Native.Utils || {};
if (localRuntime.Native.Utils.values)
{
return localRuntime.Native.Utils.values;
}
// COMPARISONS
function eq(l, r)
{
var stack = [{'x': l, 'y': r}];
while (stack.length > 0)
{
var front = stack.pop();
var x = front.x;
var y = front.y;
if (x === y)
{
continue;
}
if (typeof x === 'object')
{
var c = 0;
for (var i in x)
{
++c;
if (i in y)
{
if (i !== 'ctor')
{
stack.push({ 'x': x[i], 'y': y[i] });
}
}
else
{
return false;
}
}
if ('ctor' in x)
{
stack.push({'x': x.ctor, 'y': y.ctor});
}
if (c !== Object.keys(y).length)
{
return false;
}
}
else if (typeof x === 'function')
{
throw new Error('Equality error: general function equality is ' +
'undecidable, and therefore, unsupported');
}
else
{
return false;
}
}
return true;
}
// code in Generate/JavaScript.hs depends on the particular
// integer values assigned to LT, EQ, and GT
var LT = -1, EQ = 0, GT = 1, ord = ['LT', 'EQ', 'GT'];
function compare(x, y)
{
return {
ctor: ord[cmp(x, y) + 1]
};
}
function cmp(x, y) {
var ord;
if (typeof x !== 'object')
{
return x === y ? EQ : x < y ? LT : GT;
}
else if (x.isChar)
{
var a = x.toString();
var b = y.toString();
return a === b
? EQ
: a < b
? LT
: GT;
}
else if (x.ctor === '::' || x.ctor === '[]')
{
while (true)
{
if (x.ctor === '[]' && y.ctor === '[]')
{
return EQ;
}
if (x.ctor !== y.ctor)
{
return x.ctor === '[]' ? LT : GT;
}
ord = cmp(x._0, y._0);
if (ord !== EQ)
{
return ord;
}
x = x._1;
y = y._1;
}
}
else if (x.ctor.slice(0, 6) === '_Tuple')
{
var n = x.ctor.slice(6) - 0;
var err = 'cannot compare tuples with more than 6 elements.';
if (n === 0) return EQ;
if (n >= 1) { ord = cmp(x._0, y._0); if (ord !== EQ) return ord;
if (n >= 2) { ord = cmp(x._1, y._1); if (ord !== EQ) return ord;
if (n >= 3) { ord = cmp(x._2, y._2); if (ord !== EQ) return ord;
if (n >= 4) { ord = cmp(x._3, y._3); if (ord !== EQ) return ord;
if (n >= 5) { ord = cmp(x._4, y._4); if (ord !== EQ) return ord;
if (n >= 6) { ord = cmp(x._5, y._5); if (ord !== EQ) return ord;
if (n >= 7) throw new Error('Comparison error: ' + err); } } } } } }
return EQ;
}
else
{
throw new Error('Comparison error: comparison is only defined on ints, ' +
'floats, times, chars, strings, lists of comparable values, ' +
'and tuples of comparable values.');
}
}
// TUPLES
var Tuple0 = {
ctor: '_Tuple0'
};
function Tuple2(x, y)
{
return {
ctor: '_Tuple2',
_0: x,
_1: y
};
}
// LITERALS
function chr(c)
{
var x = new String(c);
x.isChar = true;
return x;
}
function txt(str)
{
var t = new String(str);
t.text = true;
return t;
}
// GUID
var count = 0;
function guid(_)
{
return count++;
}
// RECORDS
function update(oldRecord, updatedFields)
{
var newRecord = {};
for (var key in oldRecord)
{
var value = (key in updatedFields) ? updatedFields[key] : oldRecord[key];
newRecord[key] = value;
}
return newRecord;
}
// MOUSE COORDINATES
function getXY(e)
{
var posx = 0;
var posy = 0;
if (e.pageX || e.pageY)
{
posx = e.pageX;
posy = e.pageY;
}
else if (e.clientX || e.clientY)
{
posx = e.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
posy = e.clientY + document.body.scrollTop + document.documentElement.scrollTop;
}
if (localRuntime.isEmbed())
{
var rect = localRuntime.node.getBoundingClientRect();
var relx = rect.left + document.body.scrollLeft + document.documentElement.scrollLeft;
var rely = rect.top + document.body.scrollTop + document.documentElement.scrollTop;
// TODO: figure out if there is a way to avoid rounding here
posx = posx - Math.round(relx) - localRuntime.node.clientLeft;
posy = posy - Math.round(rely) - localRuntime.node.clientTop;
}
return Tuple2(posx, posy);
}
//// LIST STUFF ////
var Nil = { ctor: '[]' };
function Cons(hd, tl)
{
return {
ctor: '::',
_0: hd,
_1: tl
};
}
function list(arr)
{
var out = Nil;
for (var i = arr.length; i--; )
{
out = Cons(arr[i], out);
}
return out;
}
function range(lo, hi)
{
var list = Nil;
if (lo <= hi)
{
do
{
list = Cons(hi, list);
}
while (hi-- > lo);
}
return list;
}
function append(xs, ys)
{
// append Strings
if (typeof xs === 'string')
{
return xs + ys;
}
// append Text
if (xs.ctor.slice(0, 5) === 'Text:')
{
return {
ctor: 'Text:Append',
_0: xs,
_1: ys
};
}
// append Lists
if (xs.ctor === '[]')
{
return ys;
}
var root = Cons(xs._0, Nil);
var curr = root;
xs = xs._1;
while (xs.ctor !== '[]')
{
curr._1 = Cons(xs._0, Nil);
xs = xs._1;
curr = curr._1;
}
curr._1 = ys;
return root;
}
// CRASHES
function crash(moduleName, region)
{
return function(message) {
throw new Error(
'Ran into a `Debug.crash` in module `' + moduleName + '` ' + regionToString(region) + '\n'
+ 'The message provided by the code author is:\n\n '
+ message
);
};
}
function crashCase(moduleName, region, value)
{
return function(message) {
throw new Error(
'Ran into a `Debug.crash` in module `' + moduleName + '`\n\n'
+ 'This was caused by the `case` expression ' + regionToString(region) + '.\n'
+ 'One of the branches ended with a crash and the following value got through:\n\n ' + toString(value) + '\n\n'
+ 'The message provided by the code author is:\n\n '
+ message
);
};
}
function regionToString(region)
{
if (region.start.line == region.end.line)
{
return 'on line ' + region.start.line;
}
return 'between lines ' + region.start.line + ' and ' + region.end.line;
}
// BAD PORTS
function badPort(expected, received)
{
throw new Error(
'Runtime error when sending values through a port.\n\n'
+ 'Expecting ' + expected + ' but was given ' + formatValue(received)
);
}
function formatValue(value)
{
// Explicity format undefined values as "undefined"
// because JSON.stringify(undefined) unhelpfully returns ""
return (value === undefined) ? "undefined" : JSON.stringify(value);
}
// TO STRING
var _Array;
var Dict;
var List;
var toString = function(v)
{
var type = typeof v;
if (type === 'function')
{
var name = v.func ? v.func.name : v.name;
return '<function' + (name === '' ? '' : ': ') + name + '>';
}
else if (type === 'boolean')
{
return v ? 'True' : 'False';
}
else if (type === 'number')
{
return v + '';
}
else if ((v instanceof String) && v.isChar)
{
return '\'' + addSlashes(v, true) + '\'';
}
else if (type === 'string')
{
return '"' + addSlashes(v, false) + '"';
}
else if (type === 'object' && 'ctor' in v)
{
if (v.ctor.substring(0, 6) === '_Tuple')
{
var output = [];
for (var k in v)
{
if (k === 'ctor') continue;
output.push(toString(v[k]));
}
return '(' + output.join(',') + ')';
}
else if (v.ctor === '_Array')
{
if (!_Array)
{
_Array = Elm.Array.make(localRuntime);
}
var list = _Array.toList(v);
return 'Array.fromList ' + toString(list);
}
else if (v.ctor === '::')
{
var output = '[' + toString(v._0);
v = v._1;
while (v.ctor === '::')
{
output += ',' + toString(v._0);
v = v._1;
}
return output + ']';
}
else if (v.ctor === '[]')
{
return '[]';
}
else if (v.ctor === 'RBNode_elm_builtin' || v.ctor === 'RBEmpty_elm_builtin' || v.ctor === 'Set_elm_builtin')
{
if (!Dict)
{
Dict = Elm.Dict.make(localRuntime);
}
var list;
var name;
if (v.ctor === 'Set_elm_builtin')
{
if (!List)
{
List = Elm.List.make(localRuntime);
}
name = 'Set';
list = A2(List.map, function(x) {return x._0; }, Dict.toList(v._0));
}
else
{
name = 'Dict';
list = Dict.toList(v);
}
return name + '.fromList ' + toString(list);
}
else if (v.ctor.slice(0, 5) === 'Text:')
{
return '<text>';
}
else if (v.ctor === 'Element_elm_builtin')
{
return '<element>'
}
else if (v.ctor === 'Form_elm_builtin')
{
return '<form>'
}
else
{
var output = '';
for (var i in v)
{
if (i === 'ctor') continue;
var str = toString(v[i]);
var parenless = str[0] === '{' || str[0] === '<' || str.indexOf(' ') < 0;
output += ' ' + (parenless ? str : '(' + str + ')');
}
return v.ctor + output;
}
}
else if (type === 'object' && 'notify' in v && 'id' in v)
{
return '<signal>';
}
else if (type === 'object')
{
var output = [];
for (var k in v)
{
output.push(k + ' = ' + toString(v[k]));
}
if (output.length === 0)
{
return '{}';
}
return '{ ' + output.join(', ') + ' }';
}
return '<internal structure>';
};
function addSlashes(str, isChar)
{
var s = str.replace(/\\/g, '\\\\')
.replace(/\n/g, '\\n')
.replace(/\t/g, '\\t')
.replace(/\r/g, '\\r')
.replace(/\v/g, '\\v')
.replace(/\0/g, '\\0');
if (isChar)
{
return s.replace(/\'/g, '\\\'');
}
else
{
return s.replace(/\"/g, '\\"');
}
}
return localRuntime.Native.Utils.values = {
eq: eq,
cmp: cmp,
compare: F2(compare),
Tuple0: Tuple0,
Tuple2: Tuple2,
chr: chr,
txt: txt,
update: update,
guid: guid,
getXY: getXY,
Nil: Nil,
Cons: Cons,
list: list,
range: range,
append: F2(append),
crash: crash,
crashCase: crashCase,
badPort: badPort,
toString: toString
};
};
Elm.Basics = Elm.Basics || {};
Elm.Basics.make = function (_elm) {
"use strict";
_elm.Basics = _elm.Basics || {};
if (_elm.Basics.values) return _elm.Basics.values;
var _U = Elm.Native.Utils.make(_elm),
$Native$Basics = Elm.Native.Basics.make(_elm),
$Native$Utils = Elm.Native.Utils.make(_elm);
var _op = {};
var uncurry = F2(function (f,_p0) {
var _p1 = _p0;
return A2(f,_p1._0,_p1._1);
});
var curry = F3(function (f,a,b) {
return f({ctor: "_Tuple2",_0: a,_1: b});
});
var flip = F3(function (f,b,a) { return A2(f,a,b);});
var snd = function (_p2) { var _p3 = _p2;return _p3._1;};
var fst = function (_p4) { var _p5 = _p4;return _p5._0;};
var always = F2(function (a,_p6) { return a;});
var identity = function (x) { return x;};
_op["<|"] = F2(function (f,x) { return f(x);});
_op["|>"] = F2(function (x,f) { return f(x);});
_op[">>"] = F3(function (f,g,x) { return g(f(x));});
_op["<<"] = F3(function (g,f,x) { return g(f(x));});
_op["++"] = $Native$Utils.append;
var toString = $Native$Utils.toString;
var isInfinite = $Native$Basics.isInfinite;
var isNaN = $Native$Basics.isNaN;
var toFloat = $Native$Basics.toFloat;
var ceiling = $Native$Basics.ceiling;
var floor = $Native$Basics.floor;
var truncate = $Native$Basics.truncate;
var round = $Native$Basics.round;
var not = $Native$Basics.not;
var xor = $Native$Basics.xor;
_op["||"] = $Native$Basics.or;
_op["&&"] = $Native$Basics.and;
var max = $Native$Basics.max;
var min = $Native$Basics.min;
var GT = {ctor: "GT"};
var EQ = {ctor: "EQ"};
var LT = {ctor: "LT"};
var compare = $Native$Basics.compare;
_op[">="] = $Native$Basics.ge;
_op["<="] = $Native$Basics.le;
_op[">"] = $Native$Basics.gt;
_op["<"] = $Native$Basics.lt;
_op["/="] = $Native$Basics.neq;
_op["=="] = $Native$Basics.eq;
var e = $Native$Basics.e;
var pi = $Native$Basics.pi;
var clamp = $Native$Basics.clamp;
var logBase = $Native$Basics.logBase;
var abs = $Native$Basics.abs;
var negate = $Native$Basics.negate;
var sqrt = $Native$Basics.sqrt;
var atan2 = $Native$Basics.atan2;
var atan = $Native$Basics.atan;
var asin = $Native$Basics.asin;
var acos = $Native$Basics.acos;
var tan = $Native$Basics.tan;
var sin = $Native$Basics.sin;
var cos = $Native$Basics.cos;
_op["^"] = $Native$Basics.exp;
_op["%"] = $Native$Basics.mod;
var rem = $Native$Basics.rem;
_op["//"] = $Native$Basics.div;
_op["/"] = $Native$Basics.floatDiv;
_op["*"] = $Native$Basics.mul;
_op["-"] = $Native$Basics.sub;
_op["+"] = $Native$Basics.add;
var toPolar = $Native$Basics.toPolar;
var fromPolar = $Native$Basics.fromPolar;
var turns = $Native$Basics.turns;
var degrees = $Native$Basics.degrees;
var radians = function (t) { return t;};
return _elm.Basics.values = {_op: _op
,max: max
,min: min
,compare: compare
,not: not
,xor: xor
,rem: rem
,negate: negate
,abs: abs
,sqrt: sqrt
,clamp: clamp
,logBase: logBase
,e: e
,pi: pi
,cos: cos
,sin: sin
,tan: tan
,acos: acos
,asin: asin
,atan: atan
,atan2: atan2
,round: round
,floor: floor
,ceiling: ceiling
,truncate: truncate
,toFloat: toFloat
,degrees: degrees
,radians: radians
,turns: turns
,toPolar: toPolar
,fromPolar: fromPolar
,isNaN: isNaN
,isInfinite: isInfinite
,toString: toString
,fst: fst
,snd: snd
,identity: identity
,always: always
,flip: flip
,curry: curry
,uncurry: uncurry
,LT: LT
,EQ: EQ
,GT: GT};
};
Elm.Maybe = Elm.Maybe || {};
Elm.Maybe.make = function (_elm) {
"use strict";
_elm.Maybe = _elm.Maybe || {};
if (_elm.Maybe.values) return _elm.Maybe.values;
var _U = Elm.Native.Utils.make(_elm);
var _op = {};
var withDefault = F2(function ($default,maybe) {
var _p0 = maybe;
if (_p0.ctor === "Just") {
return _p0._0;
} else {
return $default;
}
});
var Nothing = {ctor: "Nothing"};
var oneOf = function (maybes) {
oneOf: while (true) {
var _p1 = maybes;
if (_p1.ctor === "[]") {
return Nothing;
} else {
var _p3 = _p1._0;
var _p2 = _p3;
if (_p2.ctor === "Nothing") {
var _v3 = _p1._1;
maybes = _v3;
continue oneOf;
} else {
return _p3;
}
}
}
};
var andThen = F2(function (maybeValue,callback) {
var _p4 = maybeValue;
if (_p4.ctor === "Just") {
return callback(_p4._0);
} else {
return Nothing;
}
});
var Just = function (a) { return {ctor: "Just",_0: a};};
var map = F2(function (f,maybe) {
var _p5 = maybe;
if (_p5.ctor === "Just") {
return Just(f(_p5._0));
} else {
return Nothing;
}
});
var map2 = F3(function (func,ma,mb) {
var _p6 = {ctor: "_Tuple2",_0: ma,_1: mb};
if (_p6.ctor === "_Tuple2" && _p6._0.ctor === "Just" && _p6._1.ctor === "Just")
{
return Just(A2(func,_p6._0._0,_p6._1._0));
} else {
return Nothing;
}
});
var map3 = F4(function (func,ma,mb,mc) {
var _p7 = {ctor: "_Tuple3",_0: ma,_1: mb,_2: mc};
if (_p7.ctor === "_Tuple3" && _p7._0.ctor === "Just" && _p7._1.ctor === "Just" && _p7._2.ctor === "Just")
{
return Just(A3(func,_p7._0._0,_p7._1._0,_p7._2._0));
} else {
return Nothing;
}
});
var map4 = F5(function (func,ma,mb,mc,md) {
var _p8 = {ctor: "_Tuple4",_0: ma,_1: mb,_2: mc,_3: md};
if (_p8.ctor === "_Tuple4" && _p8._0.ctor === "Just" && _p8._1.ctor === "Just" && _p8._2.ctor === "Just" && _p8._3.ctor === "Just")
{
return Just(A4(func,
_p8._0._0,
_p8._1._0,
_p8._2._0,
_p8._3._0));
} else {
return Nothing;
}
});
var map5 = F6(function (func,ma,mb,mc,md,me) {
var _p9 = {ctor: "_Tuple5"
,_0: ma
,_1: mb
,_2: mc
,_3: md
,_4: me};
if (_p9.ctor === "_Tuple5" && _p9._0.ctor === "Just" && _p9._1.ctor === "Just" && _p9._2.ctor === "Just" && _p9._3.ctor === "Just" && _p9._4.ctor === "Just")
{
return Just(A5(func,
_p9._0._0,
_p9._1._0,
_p9._2._0,
_p9._3._0,
_p9._4._0));
} else {
return Nothing;
}
});
return _elm.Maybe.values = {_op: _op
,andThen: andThen
,map: map
,map2: map2
,map3: map3
,map4: map4
,map5: map5
,withDefault: withDefault
,oneOf: oneOf
,Just: Just
,Nothing: Nothing};
};
Elm.Native.List = {};
Elm.Native.List.make = function(localRuntime) {
localRuntime.Native = localRuntime.Native || {};
localRuntime.Native.List = localRuntime.Native.List || {};
if (localRuntime.Native.List.values)
{
return localRuntime.Native.List.values;
}
if ('values' in Elm.Native.List)
{
return localRuntime.Native.List.values = Elm.Native.List.values;
}
var Utils = Elm.Native.Utils.make(localRuntime);
var Nil = Utils.Nil;
var Cons = Utils.Cons;
var fromArray = Utils.list;
function toArray(xs)
{
var out = [];
while (xs.ctor !== '[]')
{
out.push(xs._0);
xs = xs._1;
}
return out;
}
// f defined similarly for both foldl and foldr (NB: different from Haskell)
// ie, foldl : (a -> b -> b) -> b -> [a] -> b
function foldl(f, b, xs)
{
var acc = b;
while (xs.ctor !== '[]')
{
acc = A2(f, xs._0, acc);
xs = xs._1;
}
return acc;
}
function foldr(f, b, xs)
{
var arr = toArray(xs);
var acc = b;
for (var i = arr.length; i--; )
{
acc = A2(f, arr[i], acc);
}
return acc;
}
function