public
Created

possible 7.6rc1 bug?

  • Download Gist
gistfile1.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
cabal configure ; cabal build 1 ↵
Resolving dependencies...
Configuring idris-0.9.3...
rm -f closure.o libidris_rts.a
Building idris-0.9.3...
Preprocessing executable 'idris' for idris-0.9.3...
[ 1 of 41] Compiling Util.Pretty ( src/Util/Pretty.hs, dist/build/idris/idris-tmp/Util/Pretty.o )
[ 2 of 41] Compiling Core.TT ( src/Core/TT.hs, dist/build/idris/idris-tmp/Core/TT.o )
 
src/Core/TT.hs:624:5:
Could not deduce (Ord a0)
arising from the ambiguity check for `prettySb'
from the context (Eq a1, Num a, Ord a, Show a1, Pretty a1)
bound by the inferred type for `prettySb':
(Eq a1, Num a, Ord a, Show a1, Pretty a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> Bool -> Doc
at src/Core/TT.hs:(624,5)-(661,42)
The type variable `a0' is ambiguous
Possible fix: add a type signature that fixes these type variable(s)
Note: there are several potential instances:
instance Ord Name -- Defined at src/Core/TT.hs:160:17
instance Ord Const -- Defined at src/Core/TT.hs:242:17
instance Ord b => Ord (Binder b)
-- Defined at src/Core/TT.hs:300:23
...plus 32 others
When checking that `prettySb'
has the inferred type `forall a a1.
(Eq a1, Num a, Ord a, Show a1, Pretty a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> Bool -> Doc'
Probable cause: the inferred type is ambiguous
In an equation for `prettyEnv':
prettyEnv env t
= prettyEnv' env t False
where
prettyEnv' env t dbg = prettySe 10 env t dbg
bracket outer inner p
| inner > outer = lparen <> p <> rparen
| otherwise = p
prettySe p env (P nt n t) debug
= pretty n
<+>
if debug then
lbrack <+> pretty nt <+> colon <+> prettySe 10 env t debug
<+> rbrack
else
empty
prettySe p env (V i) debug
| i < length env
= if debug then
text . show . fst $ env !! i
else
lbrack <+> text (show i) <+> rbrack
| otherwise = text "unbound" <+> text (show i) <+> text "!"
prettySe p env (Bind n b@(Pi t) sc) debug
| noOccurrence n sc && not debug
= bracket p 2
$ prettySb env n b debug <> prettySe 10 ((n, b) : env) sc debug
prettySe p env (Bind n b sc) debug
= bracket p 2
$ prettySb env n b debug <> prettySe 10 ((n, b) : env) sc debug
prettySe p env (App f a) debug
= bracket p 1 $ prettySe 1 env f debug <+> prettySe 0 env a debug
prettySe p env (Constant c) debug = pretty c
prettySe p env Erased debug = text "[_]"
prettySe p env (Set i) debug = text "Set" <+> (text . show $ i)
prettySb env n (Lam t) = prettyB env "\955" "=>" n t
prettySb env n (Hole t) = prettyB env "?defer" "." n t
prettySb env n (Pi t) = prettyB env "(" ") ->" n t
prettySb env n (PVar t) = prettyB env "pat" "." n t
prettySb env n (PVTy t) = prettyB env "pty" "." n t
prettySb env n (Let t v) = prettyBv env "let" "in" n t v
prettySb env n (Guess t v) = prettyBv env "??" "in" n t v
....
 
src/Core/TT.hs:665:5:
Could not deduce (Ord a0) arising from the ambiguity check for `sb'
from the context (Eq a1, Num a, Ord a, Show a1)
bound by the inferred type for `sb':
(Eq a1, Num a, Ord a, Show a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> [Char]
at src/Core/TT.hs:(665,5)-(689,46)
The type variable `a0' is ambiguous
Possible fix: add a type signature that fixes these type variable(s)
Note: there are several potential instances:
instance Ord Name -- Defined at src/Core/TT.hs:160:17
instance Ord Const -- Defined at src/Core/TT.hs:242:17
instance Ord b => Ord (Binder b)
-- Defined at src/Core/TT.hs:300:23
...plus 32 others
When checking that `sb'
has the inferred type `forall a a1.
(Eq a1, Num a, Ord a, Show a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> [Char]'
Probable cause: the inferred type is ambiguous
In an equation for showEnv':
showEnv' env t dbg
= se 10 env t
where
se p env (P nt n t)
= show n
++
if dbg then "{" ++ show nt ++ " : " ++ se 10 env t ++ "}" else ""
se p env (V i)
| i < length env
= (show $ fst $ env !! i)
++ if dbg then "{" ++ show i ++ "}" else ""
| otherwise = "!!V " ++ show i ++ "!!"
se p env (Bind n b@(Pi t) sc)
| noOccurrence n sc && not dbg
= bracket p 2 $ se 1 env t ++ " -> " ++ se 10 ((n, b) : env) sc
se p env (Bind n b sc)
= bracket p 2 $ sb env n b ++ se 10 ((n, b) : env) sc
se p env (App f a) = bracket p 1 $ se 1 env f ++ " " ++ se 0 env a
se p env (Constant c) = show c
se p env Erased = "[__]"
se p env (Set i) = "Set " ++ show i
sb env n (Lam t) = showb env "\\ " " => " n t
sb env n (Hole t) = showb env "? " ". " n t
sb env n (GHole t) = showb env "?defer " ". " n t
sb env n (Pi t) = showb env "(" ") -> " n t
sb env n (PVar t) = showb env "pat " ". " n t
sb env n (PVTy t) = showb env "pty " ". " n t
sb env n (Let t v) = showbv env "let " " in " n t v
sb env n (Guess t v) = showbv env "?? " " in " n t v
showb env op sc n t = op ++ show n ++ " : " ++ se 10 env t ++ sc
showbv env op sc n t v
= op
++ show n ++ " : " ++ se 10 env t ++ " = " ++ se 10 env v ++ sc
 
 
SECOND TIME TRY :)
 
reprocessing executable 'idris' for idris-0.9.3...
[ 2 of 41] Compiling Core.TT ( src/Core/TT.hs, dist/build/idris/idris-tmp/Core/TT.o )
 
src/Core/TT.hs:616:15:
Ambiguous constraint `Num a'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
In the type signature for `prettyEnv':
prettyEnv :: (Eq a1, Num a, Ord a, Show a1, Pretty a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> Bool -> Doc
 
src/Core/TT.hs:616:15:
Ambiguous constraint `Ord a'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
In the type signature for `prettyEnv':
prettyEnv :: (Eq a1, Num a, Ord a, Show a1, Pretty a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> Bool -> Doc
source thingy.hs
Haskell
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, DeriveFunctor #-}
 
module Core.TT where
 
import Control.Monad.State
import Debug.Trace
import qualified Data.Map as Map
import Data.Char
import Data.List
import qualified Data.Binary as B
import Data.Binary hiding (get, put)
 
import Util.Pretty hiding (Str)
 
{- The language has:
* Full dependent types
* A hierarchy of universes, with cumulativity: Set : Set1, Set1 : Set2, ...
* Pattern matching letrec binding
* (primitive types defined externally)
 
Some technical stuff:
* Typechecker is kept as simple as possible
- no unification, just a checker for incomplete terms.
* We have a simple collection of tactics which we use to elaborate source
programs with implicit syntax into fully explicit terms.
-}
 
data Option = SetInSet
| CheckConv
deriving Eq
 
data FC = FC { fc_fname :: String,
fc_line :: Int }
deriving Eq
{-!
deriving instance Binary FC
!-}
 
instance Sized FC where
size (FC f l) = 1 + length f
 
instance Show FC where
show (FC f l) = f ++ ":" ++ show l
 
data Err = Msg String
| InternalMsg String
| CantUnify Term Term Err [(Name, Type)] Int -- Int is 'score' - how much we did unify
| NoSuchVariable Name
| NotInjective Term Term Term
| CantResolve Term
| CantResolveAlts [String]
| IncompleteTerm Term
| UniverseError
| ProgramLineComment
| Inaccessible Name
| At FC Err
deriving Eq
 
instance Sized Err where
size (Msg msg) = length msg
size (InternalMsg msg) = length msg
size (CantUnify left right err _ score) = size left + size right + size err
size (NoSuchVariable name) = size name
size (NotInjective l c r) = size l + size c + size r
size (CantResolve trm) = size trm
size (CantResolveAlts _) = 1
size (IncompleteTerm trm) = size trm
size UniverseError = 1
size ProgramLineComment = 1
size (At fc err) = size fc + size err
size (Inaccessible _) = 1
 
score :: Err -> Int
score (CantUnify _ _ m _ s) = s + score m
score (CantResolve _) = 20
score (NoSuchVariable _) = 1000
score _ = 0
 
instance Show Err where
show (Msg s) = s
show (InternalMsg s) = "Internal error: " ++ show s
show (CantUnify l r e sc i) = "CantUnify " ++ show l ++ " " ++ show r ++ " "
++ show e ++ " in " ++ show sc ++ " " ++ show i
show (Inaccessible n) = show n ++ " is not an accessible pattern variable"
show _ = "Error"
 
instance Pretty Err where
pretty (Msg m) = text m
pretty (CantUnify l r e _ i) =
if size l + size r > breakingSize then
text "Cannot unify" <+> colon $$
nest nestingSize (pretty l <+> text "and" <+> pretty r) $$
nest nestingSize (text "where" <+> pretty e <+> text "with" <+> (text . show $ i))
else
text "Cannot unify" <+> colon <+> pretty l <+> text "and" <+> pretty r $$
nest nestingSize (text "where" <+> pretty e <+> text "with" <+> (text . show $ i))
pretty _ = text "Error"
 
data TC a = OK a
| Error Err
deriving (Eq, Functor)
 
instance Pretty a => Pretty (TC a) where
pretty (OK ok) = pretty ok
pretty (Error err) =
if size err > breakingSize then
text "Error" <+> colon $$ (nest nestingSize $ pretty err)
else
text "Error" <+> colon <+> pretty err
 
instance Show a => Show (TC a) where
show (OK x) = show x
show (Error str) = "Error: " ++ show str
 
-- at some point, this instance should also carry type checking options
-- (e.g. Set:Set)
 
instance Monad TC where
return = OK
x >>= k = case x of
OK v -> k v
Error e -> Error e
fail e = Error (InternalMsg e)
 
tfail :: Err -> TC a
tfail e = Error e
 
trun :: FC -> TC a -> TC a
trun fc (OK a) = OK a
trun fc (Error e) = Error (At fc e)
 
instance MonadPlus TC where
mzero = fail "Unknown error"
(OK x) `mplus` _ = OK x
_ `mplus` (OK y) = OK y
err `mplus` _ = err
 
discard :: Monad m => m a -> m ()
discard f = f >> return ()
 
showSep :: String -> [String] -> String
showSep sep [] = ""
showSep sep [x] = x
showSep sep (x:xs) = x ++ sep ++ showSep sep xs
 
pmap f (x, y) = (f x, f y)
 
traceWhen True msg a = trace msg a
traceWhen False _ a = a
 
-- RAW TERMS ----------------------------------------------------------------
 
-- Names are hierarchies of strings, describing scope (so no danger of
-- duplicate names, but need to be careful on lookup).
-- Also MN for machine chosen names
 
data Name = UN String
| NS Name [String] -- root, namespaces
| MN Int String
deriving (Eq, Ord)
{-!
deriving instance Binary Name
!-}
 
instance Sized Name where
size (UN n) = 1
size (NS n els) = 1 + length els
size (MN i n) = 1
 
instance Pretty Name where
pretty (UN n) = text n
pretty (NS n s) = pretty n
pretty (MN i s) = lbrace <+> text s <+> (text . show $ i) <+> rbrace
 
instance Show Name where
show (UN n) = n
show (NS n s) = showSep "." (reverse s) ++ "." ++ show n
show (MN i s) = "{" ++ s ++ show i ++ "}"
 
 
-- Contexts allow us to map names to things. A root name maps to a collection
-- of things in different namespaces with that name.
 
type Ctxt a = Map.Map Name (Map.Map Name a)
emptyContext = Map.empty
 
nsroot (NS n _) = n
nsroot n = n
 
addDef :: Name -> a -> Ctxt a -> Ctxt a
addDef n v ctxt = case Map.lookup (nsroot n) ctxt of
Nothing -> Map.insert (nsroot n)
(Map.insert n v Map.empty) ctxt
Just xs -> Map.insert (nsroot n)
(Map.insert n v xs) ctxt
 
{- lookup a name in the context, given an optional namespace.
The name (n) may itself have a (partial) namespace given.
 
Rules for resolution:
- if an explicit namespace is given, return the names which match it. If none
match, return all names.
- if the name has has explicit namespace given, return the names which match it
and ignore the given namespace.
- otherwise, return all names.
 
-}
 
lookupCtxtName :: Maybe [String] -> Name -> Ctxt a -> [(Name, a)]
lookupCtxtName nspace n ctxt = case Map.lookup (nsroot n) ctxt of
Just xs -> filterNS (Map.toList xs)
Nothing -> []
where
filterNS [] = []
filterNS ((found, v) : xs)
| nsmatch n found = (found, v) : filterNS xs
| otherwise = filterNS xs
 
nsmatch (NS n ns) (NS p ps) = ns `isPrefixOf` ps
nsmatch (NS _ _) _ = False
nsmatch looking found = True
 
lookupCtxt :: Maybe [String] -> Name -> Ctxt a -> [a]
lookupCtxt ns n ctxt = map snd (lookupCtxtName ns n ctxt)
 
updateDef :: Name -> (a -> a) -> Ctxt a -> Ctxt a
updateDef n f ctxt
= let ds = lookupCtxtName Nothing n ctxt in
foldr (\ (n, t) c -> addDef n (f t) c) ctxt ds
 
toAlist :: Ctxt a -> [(Name, a)]
toAlist ctxt = let allns = map snd (Map.toList ctxt) in
concat (map (Map.toList) allns)
 
addAlist :: Show a => [(Name, a)] -> Ctxt a -> Ctxt a
addAlist [] ctxt = ctxt
addAlist ((n, tm) : ds) ctxt = addDef n tm (addAlist ds ctxt)
 
data Const = I Int | BI Integer | Fl Double | Ch Char | Str String
| IType | BIType | FlType | ChType | StrType
| PtrType | VoidType | Forgot
deriving (Eq, Ord)
{-!
deriving instance Binary Const
!-}
 
instance Sized Const where
size _ = 1
 
instance Pretty Const where
pretty (I i) = text . show $ i
pretty (BI i) = text . show $ i
pretty (Fl f) = text . show $ f
pretty (Ch c) = text . show $ c
pretty (Str s) = text s
pretty IType = text "Int"
pretty BIType = text "BigInt"
pretty FlType = text "Float"
pretty ChType = text "Char"
pretty StrType = text "String"
pretty PtrType = text "Ptr"
pretty VoidType = text "Void"
pretty Forgot = text "Forgot"
 
data Raw = Var Name
| RBind Name (Binder Raw) Raw
| RApp Raw Raw
| RSet
| RForce Raw
| RConstant Const
deriving (Show, Eq)
 
instance Sized Raw where
size (Var name) = 1
size (RBind name bind right) = 1 + size bind + size right
size (RApp left right) = 1 + size left + size right
size RSet = 1
size (RForce raw) = 1 + size raw
size (RConstant const) = size const
 
instance Pretty Raw where
pretty = text . show
 
{-!
deriving instance Binary Raw
!-}
 
data Binder b = Lam { binderTy :: b }
| Pi { binderTy :: b }
| Let { binderTy :: b,
binderVal :: b }
| NLet { binderTy :: b,
binderVal :: b }
| Hole { binderTy :: b}
| GHole { binderTy :: b}
| Guess { binderTy :: b,
binderVal :: b }
| PVar { binderTy :: b }
| PVTy { binderTy :: b }
deriving (Show, Eq, Ord, Functor)
{-!
deriving instance Binary Binder
!-}
 
instance Sized a => Sized (Binder a) where
size (Lam ty) = 1 + size ty
size (Pi ty) = 1 + size ty
size (Let ty val) = 1 + size ty + size val
size (NLet ty val) = 1 + size ty + size val
size (Hole ty) = 1 + size ty
size (GHole ty) = 1 + size ty
size (Guess ty val) = 1 + size ty + size val
size (PVar ty) = 1 + size ty
size (PVTy ty) = 1 + size ty
 
fmapMB :: Monad m => (a -> m b) -> Binder a -> m (Binder b)
fmapMB f (Let t v) = liftM2 Let (f t) (f v)
fmapMB f (NLet t v) = liftM2 NLet (f t) (f v)
fmapMB f (Guess t v) = liftM2 Guess (f t) (f v)
fmapMB f (Lam t) = liftM Lam (f t)
fmapMB f (Pi t) = liftM Pi (f t)
fmapMB f (Hole t) = liftM Hole (f t)
fmapMB f (GHole t) = liftM GHole (f t)
fmapMB f (PVar t) = liftM PVar (f t)
fmapMB f (PVTy t) = liftM PVTy (f t)
 
raw_apply :: Raw -> [Raw] -> Raw
raw_apply f [] = f
raw_apply f (a : as) = raw_apply (RApp f a) as
 
raw_unapply :: Raw -> (Raw, [Raw])
raw_unapply t = ua [] t where
ua args (RApp f a) = ua (a:args) f
ua args t = (t, args)
 
data RawFun = RawFun { rtype :: Raw,
rval :: Raw
}
deriving Show
 
data RawDatatype = RDatatype Name Raw [(Name, Raw)]
deriving Show
 
data RDef = RFunction RawFun
| RConst Raw
| RData RawDatatype
deriving Show
 
type RProgram = [(Name, RDef)]
 
-- WELL TYPED TERMS ---------------------------------------------------------
 
data UExp = UVar Int -- universe variable
| UVal Int -- explicit universe level
deriving (Eq, Ord)
 
instance Sized UExp where
size _ = 1
 
-- We assume that universe levels have been checked, so anything external
-- can just have the same universe variable and we won't get any new
-- cycles.
 
instance Binary UExp where
put x = return ()
get = return (UVar (-1))
 
instance Show UExp where
show (UVar x) | x < 26 = [toEnum (x + fromEnum 'a')]
| otherwise = toEnum ((x `mod` 26) + fromEnum 'a') : show (x `div` 26)
show (UVal x) = show x
-- show (UMax l r) = "max(" ++ show l ++ ", " ++ show r ++")"
 
data UConstraint = ULT UExp UExp
| ULE UExp UExp
deriving Eq
 
instance Show UConstraint where
show (ULT x y) = show x ++ " < " ++ show y
show (ULE x y) = show x ++ " <= " ++ show y
 
type UCs = (Int, [UConstraint])
 
data NameType = Bound | Ref | DCon Int Int | TCon Int Int
deriving (Show, Ord)
{-!
deriving instance Binary NameType
!-}
 
instance Sized NameType where
size _ = 1
 
instance Pretty NameType where
pretty = text . show
 
instance Eq NameType where
Bound == Bound = True
Ref == Ref = True
DCon _ a == DCon _ b = (a == b) -- ignore tag
TCon _ a == TCon _ b = (a == b) -- ignore tag
_ == _ = False
 
data TT n = P NameType n (TT n) -- embed type
| V Int
| Bind n (Binder (TT n)) (TT n)
| App (TT n) (TT n) -- function, function type, arg
| Constant Const
| Erased
| Set UExp
deriving (Ord, Functor)
{-!
deriving instance Binary TT
!-}
 
instance Sized a => Sized (TT a) where
size (P name n trm) = 1 + size name + size n + size trm
size (V v) = 1
size (Bind nm binder bdy) = 1 + size nm + size binder + size bdy
size (App l r) = 1 + size l + size r
size (Constant c) = size c
size Erased = 1
size (Set u) = 1 + size u
 
instance Pretty a => Pretty (TT a) where
pretty _ = text "test"
 
type EnvTT n = [(n, Binder (TT n))]
 
data Datatype n = Data { d_typename :: n,
d_typetag :: Int,
d_type :: (TT n),
d_cons :: [(n, TT n)] }
deriving (Show, Functor, Eq)
 
instance Eq n => Eq (TT n) where
(==) (P xt x _) (P yt y _) = xt == yt && x == y
(==) (V x) (V y) = x == y
(==) (Bind _ xb xs) (Bind _ yb ys) = xb == yb && xs == ys
(==) (App fx ax) (App fy ay) = fx == fy && ax == ay
(==) (Set _) (Set _) = True -- deal with constraints later
(==) (Constant x) (Constant y) = x == y
(==) Erased _ = True
(==) _ Erased = True
(==) _ _ = False
 
-- A few handy operations on well typed terms:
 
isInjective :: TT n -> Bool
isInjective (P (DCon _ _) _ _) = True
isInjective (P (TCon _ _) _ _) = True
isInjective (Constant _) = True
isInjective (Set x) = True
isInjective (Bind _ (Pi _) sc) = True
isInjective (App f a) = isInjective f
isInjective _ = False
 
instantiate :: TT n -> TT n -> TT n
instantiate e = subst 0 where
subst i (V x) | i == x = e
subst i (Bind x b sc) = Bind x (fmap (subst i) b) (subst (i+1) sc)
subst i (App f a) = App (subst i f) (subst i a)
subst i t = t
 
pToV :: Eq n => n -> TT n -> TT n
pToV n = pToV' n 0
pToV' n i (P _ x _) | n == x = V i
pToV' n i (Bind x b sc)
| n == x = Bind x (fmap (pToV' n i) b) sc
| otherwise = Bind x (fmap (pToV' n i) b) (pToV' n (i+1) sc)
pToV' n i (App f a) = App (pToV' n i f) (pToV' n i a)
pToV' n i t = t
 
-- Convert several names. First in the list comes out as V 0
pToVs :: Eq n => [n] -> TT n -> TT n
pToVs ns tm = pToVs' ns tm 0 where
pToVs' [] tm i = tm
pToVs' (n:ns) tm i = pToV' n i (pToVs' ns tm (i+1))
 
vToP :: TT n -> TT n
vToP = vToP' [] where
vToP' env (V i) = let (n, b) = (env !! i) in
P Bound n (binderTy b)
vToP' env (Bind n b sc) = let b' = fmap (vToP' env) b in
Bind n b' (vToP' ((n, b'):env) sc)
vToP' env (App f a) = App (vToP' env f) (vToP' env a)
vToP' env t = t
 
finalise :: Eq n => TT n -> TT n
finalise (Bind x b sc) = Bind x (fmap finalise b) (pToV x (finalise sc))
finalise (App f a) = App (finalise f) (finalise a)
finalise t = t
 
subst :: Eq n => n -> TT n -> TT n -> TT n
subst n v tm = instantiate v (pToV n tm)
 
substNames :: Eq n => [(n, TT n)] -> TT n -> TT n
substNames [] t = t
substNames ((n, tm) : xs) t = subst n tm (substNames xs t)
 
-- Returns true if V 0 and bound name n do not occur in the term
 
noOccurrence :: Eq n => n -> TT n -> Bool
noOccurrence n t = no' 0 t
where
no' i (V x) = not (i == x)
no' i (P Bound x _) = not (n == x)
no' i (Bind n b sc) = noB' i b && no' (i+1) sc
where noB' i (Let t v) = no' i t && no' i v
noB' i (Guess t v) = no' i t && no' i v
noB' i b = no' i (binderTy b)
no' i (App f a) = no' i f && no' i a
no' i _ = True
 
-- Returns all names used free in the term
 
freeNames :: Eq n => TT n -> [n]
freeNames (P _ n _) = [n]
freeNames (Bind n (Let t v) sc) = nub $ freeNames v ++ (freeNames sc \\ [n])
++ freeNames t
freeNames (Bind n b sc) = nub $ freeNames (binderTy b) ++ (freeNames sc \\ [n])
freeNames (App f a) = nub $ freeNames f ++ freeNames a
freeNames _ = []
 
-- Return the arity of a (normalised) type
 
arity :: TT n -> Int
arity (Bind n (Pi t) sc) = 1 + arity sc
arity _ = 0
 
-- deconstruct an application; returns the function and a list of arguments
 
unApply :: TT n -> (TT n, [TT n])
unApply t = ua [] t where
ua args (App f a) = ua (a:args) f
ua args t = (t, args)
 
mkApp :: TT n -> [TT n] -> TT n
mkApp f [] = f
mkApp f (a:as) = mkApp (App f a) as
 
forget :: TT Name -> Raw
forget tm = fe [] tm
where
fe env (P _ n _) = Var n
fe env (V i) = Var (env !! i)
fe env (Bind n b sc) = RBind n (fmap (fe env) b)
(fe (n:env) sc)
fe env (App f a) = RApp (fe env f) (fe env a)
fe env (Constant c)
= RConstant c
fe env (Set i) = RSet
fe env Erased = RConstant Forgot
bindAll :: [(n, Binder (TT n))] -> TT n -> TT n
bindAll [] t =t
bindAll ((n, b) : bs) t = Bind n b (bindAll bs t)
 
bindTyArgs :: (TT n -> Binder (TT n)) -> [(n, TT n)] -> TT n -> TT n
bindTyArgs b xs = bindAll (map (\ (n, ty) -> (n, b ty)) xs)
 
getArgTys :: TT n -> [(n, TT n)]
getArgTys (Bind n (Pi t) sc) = (n, t) : getArgTys sc
getArgTys _ = []
 
getRetTy :: TT n -> TT n
getRetTy (Bind n (PVar _) sc) = getRetTy sc
getRetTy (Bind n (PVTy _) sc) = getRetTy sc
getRetTy (Bind n (Pi _) sc) = getRetTy sc
getRetTy sc = sc
 
uniqueName :: Name -> [Name] -> Name
uniqueName n hs | n `elem` hs = uniqueName (nextName n) hs
| otherwise = n
 
nextName (NS x s) = NS (nextName x) s
nextName (MN i n) = MN (i+1) n
nextName (UN x) = let (num', nm') = span isDigit (reverse x)
nm = reverse nm'
num = readN (reverse num') in
UN (nm ++ show (num+1))
where
readN "" = 0
readN x = read x
 
type Term = TT Name
type Type = Term
 
type Env = EnvTT Name
 
-- an environment with de Bruijn indices 'normalised' so that they all refer to
-- this environment
 
newtype WkEnvTT n = Wk (EnvTT n)
type WkEnv = WkEnvTT Name
 
instance (Eq n, Show n) => Show (TT n) where
show t = showEnv [] t
 
instance Show Const where
show (I i) = show i
show (BI i) = show i ++ "L"
show (Fl f) = show f
show (Ch c) = show c
show (Str s) = show s
show IType = "Int"
show BIType = "Integer"
show FlType = "Float"
show ChType = "Char"
show StrType = "String"
show PtrType = "Ptr"
show VoidType = "Void"
 
showEnv env t = showEnv' env t False
showEnvDbg env t = showEnv' env t True
 
prettyEnv:: (Eq a1, Num a, Ord a, Show a1, Pretty a1) =>
[(a1, Binder (TT a1))] -> a1 -> Binder (TT a1) -> Bool -> Doc
prettyEnv env t = prettyEnv' env t False
where
prettyEnv' env t dbg = prettySe 10 env t dbg
 
bracket outer inner p
| inner > outer = lparen <> p <> rparen
| otherwise = p
 
prettySe p env (P nt n t) debug =
pretty n <+>
if debug then
lbrack <+> pretty nt <+> colon <+> prettySe 10 env t debug <+> rbrack
else
empty
prettySe p env (V i) debug
| i < length env =
if debug then
text . show . fst $ env!!i
else
lbrack <+> text (show i) <+> rbrack
| otherwise = text "unbound" <+> text (show i) <+> text "!"
prettySe p env (Bind n b@(Pi t) sc) debug
| noOccurrence n sc && not debug =
bracket p 2 $ prettySb env n b debug <> prettySe 10 ((n, b):env) sc debug
prettySe p env (Bind n b sc) debug =
bracket p 2 $ prettySb env n b debug <> prettySe 10 ((n, b):env) sc debug
prettySe p env (App f a) debug =
bracket p 1 $ prettySe 1 env f debug <+> prettySe 0 env a debug
prettySe p env (Constant c) debug = pretty c
prettySe p env Erased debug = text "[_]"
prettySe p env (Set i) debug = text "Set" <+> (text . show $ i)
 
prettySb env n (Lam t) = prettyB env "λ" "=>" n t
prettySb env n (Hole t) = prettyB env "?defer" "." n t
prettySb env n (Pi t) = prettyB env "(" ") ->" n t
prettySb env n (PVar t) = prettyB env "pat" "." n t
prettySb env n (PVTy t) = prettyB env "pty" "." n t
prettySb env n (Let t v) = prettyBv env "let" "in" n t v
prettySb env n (Guess t v) = prettyBv env "??" "in" n t v
 
prettyB env op sc n t debug =
text op <> pretty n <+> colon <+> prettySe 10 env t debug <> text sc
 
prettyBv env op sc n t v debug =
text op <> pretty n <+> colon <+> prettySe 10 env t debug <+> text "=" <+>
prettySe 10 env v debug <> text sc
 
showEnv' env t dbg = se 10 env t where
se p env (P nt n t) = show n
++ if dbg then "{" ++ show nt ++ " : " ++ se 10 env t ++ "}" else ""
se p env (V i) | i < length env = (show $ fst $ env!!i) ++
if dbg then "{" ++ show i ++ "}" else ""
| otherwise = "!!V " ++ show i ++ "!!"
se p env (Bind n b@(Pi t) sc)
| noOccurrence n sc && not dbg = bracket p 2 $ se 1 env t ++ " -> " ++ se 10 ((n,b):env) sc
se p env (Bind n b sc) = bracket p 2 $ sb env n b ++ se 10 ((n,b):env) sc
se p env (App f a) = bracket p 1 $ se 1 env f ++ " " ++ se 0 env a
se p env (Constant c) = show c
se p env Erased = "[__]"
se p env (Set i) = "Set " ++ show i
 
sb env n (Lam t) = showb env "\\ " " => " n t
sb env n (Hole t) = showb env "? " ". " n t
sb env n (GHole t) = showb env "?defer " ". " n t
sb env n (Pi t) = showb env "(" ") -> " n t
sb env n (PVar t) = showb env "pat " ". " n t
sb env n (PVTy t) = showb env "pty " ". " n t
sb env n (Let t v) = showbv env "let " " in " n t v
sb env n (Guess t v) = showbv env "?? " " in " n t v
 
showb env op sc n t = op ++ show n ++ " : " ++ se 10 env t ++ sc
showbv env op sc n t v = op ++ show n ++ " : " ++ se 10 env t ++ " = " ++
se 10 env v ++ sc
 
bracket outer inner str | inner > outer = "(" ++ str ++ ")"
| otherwise = str
 
-- Check whether a term has any holes in it - impure if so
 
pureTerm :: TT n -> Bool
pureTerm (App f a) = pureTerm f && pureTerm a
pureTerm (Bind n b sc) = pureBinder b && pureTerm sc where
pureBinder (Hole _) = False
pureBinder (Guess _ _) = False
pureBinder (Let t v) = pureTerm t && pureTerm v
pureBinder t = pureTerm (binderTy t)
pureTerm _ = True
 
-- weaken a term by adding i to each de Bruijn index (i.e. lift it over i bindings)
 
weakenTm :: Int -> TT n -> TT n
weakenTm i t = wk i 0 t
where wk i min (V x) | x >= min = V (i + x)
wk i m (App f a) = App (wk i m f) (wk i m a)
wk i m (Bind x b sc) = Bind x (wkb i m b) (wk i (m + 1) sc)
wk i m t = t
wkb i m t = fmap (wk i m) t
 
-- weaken an environment so that all the de Bruijn indices are correct according
-- to the latest bound variable
 
weakenEnv :: EnvTT n -> EnvTT n
weakenEnv env = wk (length env - 1) env
where wk i [] = []
wk i ((n, b) : bs) = (n, weakenTmB i b) : wk (i - 1) bs
weakenTmB i (Let t v) = Let (weakenTm i t) (weakenTm i v)
weakenTmB i (Guess t v) = Guess (weakenTm i t) (weakenTm i v)
weakenTmB i t = t { binderTy = weakenTm i (binderTy t) }
 
weakenTmEnv :: Int -> EnvTT n -> EnvTT n
weakenTmEnv i = map (\ (n, b) -> (n, fmap (weakenTm i) b))
 
orderPats :: Term -> Term
orderPats tm = op [] tm
where
op ps (Bind n (PVar t) sc) = op ((n, t) : ps) sc
op ps sc = bindAll (map (\ (n, t) -> (n, PVar t)) (sortP ps)) sc
 
sortP ps = pick [] (reverse ps)
 
namesIn (P _ n _) = [n]
namesIn (Bind n b t) = nub $ nb b ++ (namesIn t \\ [n])
where nb (Let t v) = nub (namesIn t) ++ nub (namesIn v)
nb (Guess t v) = nub (namesIn t) ++ nub (namesIn v)
nb t = namesIn (binderTy t)
namesIn (App f a) = nub (namesIn f ++ namesIn a)
namesIn _ = []
 
pick acc [] = reverse acc
pick acc ((n, t) : ps) = pick (insert n t acc) ps
 
insert n t [] = [(n, t)]
insert n t ((n',t') : ps)
| n `elem` (namesIn t' ++ concatMap namesIn (map snd ps))
= (n', t') : insert n t ps
| otherwise = (n,t):(n',t'):ps

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.