public

Linear regression by gradient descent

  • Download Gist
linear_regression_by_gradient_descent.R
R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
##
## Linear regression by gradient descent
##
## A learning exercise to help build intuition about gradient descent.
## J. Christopher Bare, 2012
##
 
# generate random data in which y is a noisy function of x
x <- runif(1000, -5, 5)
y <- x + rnorm(1000) + 3
 
# fit a linear model
res <- lm( y ~ x )
 
# plot the data and the model
plot(x,y, col=rgb(0.2,0.4,0.6,0.4), main='Linear regression')
abline(res, col='blue')
 
# squared error cost function
cost <- function(X, y, theta) {
sum( (X %*% theta - y)^2 ) / (2*length(y))
}
 
# learning rate and iteration limit
alpha <- 0.01
num_iters <- 1000
 
# keep history
cost_history <- double(num_iters)
theta_history <- list(num_iters)
 
# initialize coefficients
theta <- matrix(c(0,0), nrow=2)
 
# add a column of 1's for the intercept coefficient
X <- cbind(1, matrix(x))
 
# gradient descent
for (i in 1:num_iters) {
error <- (X %*% theta - y)
delta <- t(X) %*% error / length(y)
theta <- theta - alpha * delta
cost_history[i] <- cost(X, y, theta)
theta_history[[i]] <- theta
}
 
# plot data and converging fit
plot(x,y, col=rgb(0.2,0.4,0.6,0.4), main='Linear regression by gradient descent')
for (i in c(1,3,6,10,14,seq(20,num_iters,by=10))) {
abline(coef=theta_history[[i]], col=rgb(0.8,0,0,0.3))
}
abline(coef=theta, col="blue")
 
# check out the trajectory of the cost function
cost_history[seq(1,num_iters, by=100)]
plot(cost_history, type='l', col='blue', lwd=2, main='Cost function', ylab='cost', xlab='Iterations')

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.