Last active
November 18, 2020 11:23
-
-
Save cburgdorf/e2fb46e5ad61ed7b9a29029c5cc30134 to your computer and use it in GitHub Desktop.
Comparing XOR between tensorflow and keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.core import Activation, Dense | |
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") | |
target_data = np.array([[0],[1],[1],[0]], "float32") | |
model = Sequential() | |
model.add(Dense(32, input_dim=2, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) | |
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) | |
model.fit(training_data, target_data, nb_epoch=1000, verbose=2) | |
print model.predict(training_data) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # XOR input | |
output_data = [[0.], [1.], [1.], [0.]] # XOR output | |
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input") | |
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output") | |
hidden_nodes = 5 | |
b_hidden = tf.Variable(tf.random_normal([hidden_nodes]), name="hidden_bias") | |
W_hidden = tf.Variable(tf.random_normal([2, hidden_nodes]), name="hidden_weights") | |
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden) | |
W_output = tf.Variable(tf.random_normal([hidden_nodes, 1]), name="output_weights") # output layer's weight matrix | |
output = tf.sigmoid(tf.matmul(hidden, W_output)) # calc output layer's activation | |
cross_entropy = tf.square(n_output - output) # simpler, but also works | |
loss = tf.reduce_mean(cross_entropy) # mean the cross_entropy | |
optimizer = tf.train.AdamOptimizer(0.01) # take a gradient descent for optimizing with a "stepsize" of 0.1 | |
train = optimizer.minimize(loss) # let the optimizer train | |
init = tf.initialize_all_variables() | |
sess = tf.Session() # create the session and therefore the graph | |
sess.run(init) # initialize all variables | |
for epoch in xrange(0, 2001): | |
# run the training operation | |
cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output], | |
feed_dict={n_input: input_data, n_output: output_data}) | |
if epoch % 200 == 0: | |
print("") | |
print("step: {:>3}".format(epoch)) | |
print("loss: {}".format(cvalues[1])) | |
print("") | |
print("input: {} | output: {}".format(input_data[0], sess.run(output, feed_dict={n_input: [input_data[0]]}))) | |
print("input: {} | output: {}".format(input_data[1], sess.run(output, feed_dict={n_input: [input_data[1]]}))) | |
print("input: {} | output: {}".format(input_data[2], sess.run(output, feed_dict={n_input: [input_data[2]]}))) | |
print("input: {} | output: {}".format(input_data[3], sess.run(output, feed_dict={n_input: [input_data[3]]}))) |
Do you know if it is possible to use a recurrent network to solve the Xor problem with keras? I was trying to implement it and I am not able to do it yet
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Why does the Keras version have 32 nodes in the hidden layer wheras tensorflow only has 5? Am I understanding the code incorrectly?