Instantly share code, notes, and snippets.
socialist millionaire with tcp sockets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'socket' | |
#http://www.scribd.com/doc/34203336/How-to-Implement-RSA-in-Ruby#download | |
# Calculate a modular exponentiation eg: b^p mod m | |
def mod_pow(base, power, mod) | |
result = 1 | |
while power > 0 | |
result = (result * base) % mod if power & 1 == 1 | |
base = (base * base) % mod | |
power >>= 1 | |
end | |
result | |
end | |
# Convert a string into a big number | |
def str_to_bignum(s) | |
n = 0 | |
s.each_byte {|b|n=n*256+b} | |
n | |
end | |
# Convert a bignum to a string | |
def bignum_to_str(n) | |
s="" | |
while n>0 | |
s = (n&0xff).chr + s | |
n >>= 8 | |
end | |
s | |
end | |
#http://rosettacode.org/wiki/Modular_inverse#Ruby | |
#based on pseudo code from http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Iterative_method_2 and from translating the python implementation. | |
def extended_gcd(a, b) | |
last_remainder, remainder = a.abs, b.abs | |
x, last_x, y, last_y = 0, 1, 1, 0 | |
while remainder != 0 | |
last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder) | |
x, last_x = last_x - quotient*x, x | |
y, last_y = last_y - quotient*y, y | |
end | |
return last_remainder, last_x * (a < 0 ? -1 : 1) | |
end | |
def invmod(e, et) | |
g, x = extended_gcd(e, et) | |
if g != 1 | |
raise 'Teh maths are broken!' | |
end | |
x % et | |
end | |
#puts variable name and value | |
def debug(sym) | |
puts "#{sym} is #{eval sym.to_s, TOPLEVEL_BINDING}" | |
end | |
if ARGV.size < 2 | |
puts "usages: ruby socialist_milli.rb <ip address> <secret> <optional:your port:default 44444> <optional:their_port:default 44444>" | |
exit 1 | |
end | |
begin | |
socket = TCPSocket.new ARGV[0], ARGV[3] || 44444 | |
guy2 = true | |
rescue | |
server = TCPServer.new ARGV[2] || 44444 | |
socket = server.accept | |
guy2 = false | |
end | |
# A prime and a generator (primitive root) for that prime. | |
# Can be same as OTR: http://www.ietf.org/rfc/rfc3526.txt | |
#prime = 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF | |
prime = 97 | |
h = 5 | |
x = str_to_bignum ARGV[1] | |
puts "your secret num is #{x}" | |
a = guy2 ? 4 : 2 | |
alpha = guy2 ? 5 : 3 | |
r = guy2 ? 6 : 9 | |
h_to_the_a = mod_pow(h,a,prime) | |
socket.puts h_to_the_a | |
h_to_the_b = socket.gets.to_i | |
g = mod_pow(h_to_the_b, a, prime) | |
debug :g | |
h_to_the_alpha = mod_pow(h,alpha,prime) | |
socket.puts h_to_the_alpha | |
h_to_the_beta = socket.gets.to_i | |
gamma = mod_pow(h_to_the_beta, alpha, prime) | |
debug :gamma | |
p = mod_pow(gamma,r,prime) | |
socket.puts p | |
q = socket.gets.to_i | |
debug :p | |
debug :q | |
t = q*invmod(p, prime) % prime | |
debug :t | |
p_prime = (mod_pow(h,r,prime)*mod_pow(h,x,prime)) % prime | |
socket.puts p_prime | |
q_prime = socket.gets.to_i | |
debug :p_prime | |
debug :q_prime | |
p_prime_q_prime_inverse_to_the_alpha = mod_pow(((p_prime*invmod(q_prime, prime)) % prime),alpha, prime) | |
socket.puts p_prime_q_prime_inverse_to_the_alpha | |
p_prime_q_prime_inverse_to_the_beta = socket.gets.to_i | |
debug :p_prime_q_prime_inverse_to_the_beta | |
c = mod_pow(p_prime_q_prime_inverse_to_the_beta,alpha,prime) | |
debug :c | |
puts c == t |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment