This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This script loads a dataset of which the last column is supposed to be the | |
# class and logs the accuracy | |
library(azuremlsdk) | |
library(caret) | |
all_data <- read.csv("iris.csv") | |
summary(all_data) | |
in_train <- createDataPartition(y = all_data$Species, p = .8, list = FALSE) | |
train_data <- all_data[in_train, ] | |
test_data <- all_data[-in_train, ] | |
# Run algorithms using 10-fold cross validation | |
control <- trainControl(method = "cv", number = 10) | |
metric <- "Accuracy" | |
set.seed(7) | |
model <- train(Species ~ ., | |
data = train_data, | |
method = "lda", | |
metric = metric, | |
trControl = control) | |
predictions <- predict(model, test_data) | |
conf_matrix <- confusionMatrix(predictions, test_data$Species, mode="everything") | |
message(conf_matrix) | |
log_metric_to_run(metric, conf_matrix$overall["Accuracy"]) | |
log_metric_to_run("F1-Score", conf_matrix$overall["F1"]) | |
log_metric_to_run("Precision", conf_matrix$overall["Precision"]) | |
log_metric_to_run("Recall", conf_matrix$overall["Recall"]) | |
saveRDS(model, file="./outputs/model_trained.rds") | |
ws <- load_workspace_from_config() | |
#Register Model to the | |
model <- register_model(ws, | |
model_path = "outputs/model_trained.rds", | |
model_name = "iris_model_trained", | |
description = "Predict class of the Iris flower") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment