Skip to content

Instantly share code, notes, and snippets.

@cha1690
Created March 29, 2020 12:28
Show Gist options
  • Save cha1690/60196c80c9f18fe89ae5cfb6bb5b762b to your computer and use it in GitHub Desktop.
Save cha1690/60196c80c9f18fe89ae5cfb6bb5b762b to your computer and use it in GitHub Desktop.
Coronavirus App
from flask import Flask, render_template
import requests
from bs4 import BeautifulSoup
import dateutil.parser
import pandas as pd
import plotly
from plotly import graph_objs as go
import json
app = Flask(__name__)
def data_scrape():
base_url = 'https://www.worldometers.info/coronavirus/'
response = requests.get(base_url, headers={
'User-agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'})
soup = BeautifulSoup(response.text, 'html.parser')
table = soup.find('table', id=["main_table_countries_today"])
table_rows = table.find_all('tr')
data = []
for tr in table_rows:
td = tr.find_all('td')
row = [i.text.strip().replace("+","") for i in td]
data.append(row)
return data
def data_cleanup():
data = data_scrape()
cleaned_data = []
for row in data:
row_list = []
for i in row:
i = i.replace("+","")
i = i.replace("-","")
i = i.replace(",","")
if i == "":
i = "0"
row_list.append(i.strip())
row_list[1:8] = map(int, row_list[1:8])
cleaned_data.append(row_list)
return cleaned_data
def news_scrape():
secret = '2ab6926b9fac414faa1471562bcd2f60'
url = 'http://newsapi.org/v2/top-headlines?country=in&category=health&apiKey=2ab6926b9fac414faa1471562bcd2f60'
parameters = {
'q': 'coronavirus',
'pageSize': 40,
'apiKey': secret,
}
response = requests.get(url,
params=parameters)
response_json = response.json()
article = response_json['articles']
return article
def india_statewise():
base_url = 'https://www.mohfw.gov.in/'
response = requests.get(base_url, headers={
'User-agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'})
soup = BeautifulSoup(response.text, 'html.parser')
div = soup.find('div', {'class': 'content newtab'})
tbody = div.find('tbody')
state_rows = tbody.find_all('tr')
state_num = []
for tr in state_rows[:-2]:
td = tr.find_all('td')
row = [i.text.strip() for i in td]
row[2:5] = map(int, row[2:5])
state_num.append(row)
state_num.sort(key=lambda x: x[2], reverse=True)
return state_num
@app.route('/')
def home():
data = data_scrape()
for row in data:
if 'India' in row:
country = row[0]
total_cases = row[1]
new_cases = row[2]
total_deaths = row[3]
new_deaths = row[4]
active_cases = row[6]
total_recovered = row[5]
serious_critical = row[7]
state_num = india_statewise()
return render_template('index.html', country=country, total_cases=total_cases, new_cases=new_cases,
total_deaths=total_deaths, new_deaths=new_deaths,
active_cases=active_cases, total_recovered=total_recovered,
serious_critical=serious_critical,
state_num=state_num)
@app.route('/global_data')
def global_data():
data = data_scrape()
return render_template('global_data.html', data=data)
@app.route('/comparative_chart')
def comparative_chart():
data = data_cleanup()
df = pd.DataFrame(data[:15], columns=['Country', 'Total Cases', 'New Cases', 'Total Deaths', 'New Deaths',
'Total Recovered', 'Active Cases', 'Serious Cases', 'Total Cases/ 1mn',
'Total Deaths/ 1mn','1st Case'])
df.head()
to_drop = ['Total Cases/ 1mn', 'Total Deaths/ 1mn', '1st Case']
df.drop(to_drop, inplace=True, axis=1)
# print(df)
df.sort_values(['Total Cases'], ascending=True, inplace=True)
marker1 = dict(
color='#1B4079',
line=dict(color='#1B4079', width=3)
)
marker2 = dict(
color='#4D7C8A',
line=dict(color='#4D7C8A', width=3)
)
marker3 = dict(
color='#7F9C96',
line=dict(color='#7F9C96', width=3)
)
trace1 = go.Bar(y=df['Country'], x=df['Active Cases'], name='Active Cases', orientation='h', marker=marker1,
text=df['Active Cases'], texttemplate='%{text:.2s}', textposition='outside', width=0.8)
trace2 = go.Bar(y=df['Country'], x=df['Total Recovered'], name='Total Recovered', orientation='h', marker=marker2,
text=df['Total Recovered'], texttemplate='%{text:.2s}', textposition='outside', width=0.8)
trace3 = go.Bar(y=df['Country'], x=df['Total Deaths'], name='Total Deaths', orientation='h', marker=marker3,
text=df['Total Deaths'], texttemplate='%{text:.2s}', textposition='outside', width=0.8)
layout = go.Layout(barmode='stack',
font=dict(family="Courier New, monospace", size=20, color="#1E2019"),
legend=dict(x=0.1, y=1.09,
traceorder="normal",
font=dict(family="sans-serif", size=20, color="black"),
bordercolor="Black",
borderwidth=1),
legend_orientation='h',
autosize=True,
xaxis_showgrid=False, yaxis_showgrid=False,
xaxis_showticklabels=False,
bargap=0.6,height=800,
margin=dict(
l=150,
r=50,
b=100,
t=100,
pad=10
)
)
data = [trace1, trace2, trace3]
fig = dict(data=data, layout=layout)
graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
return render_template('comparative_chart.html', graphJSON=graphJSON)
@app.route('/india_news')
def india_news():
article = news_scrape()
title = []
description = []
link = []
published = []
for ar in article:
title.append(ar["title"])
description.append(ar["description"])
d = dateutil.parser.parse(ar["publishedAt"])
published.append(d.strftime('%d-%m-%Y %H:%M:%S'))
link.append(ar["url"])
return render_template('india_news.html', title=title, description=description, published=published, link=link)
if __name__ == '__main__':
app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment