View test_grassmann.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Grassmann; | |
@basis D"1,1,1,0"; | |
P = [ rand()*v124 + rand()*v134 + rand()*v234 + v123 for i=1:1000 ]; | |
L = [ rand()*v12 + rand()*v13 + rand()*v14 + rand()*v23 + rand()*v24 + rand()*v34 for i=1:1000 ]; | |
A = [ rand() for i=1:1000]; | |
test2(L,A,P) = (LA = exp.(L.*A); LA.*P.*.~LA); | |
R = test2(L,A,P); | |
f(L,A,P,i) = (LA = exp(L[i]*A[i]); LA*P[i]*~LA); | |
function test(L,A,P,R) | |
for k ∈ 1:1000 |
View grove-iterator.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Dendriform, ResumableFunctions | |
@resumable function trees(g::Union{Grove,PBTree}) | |
typeof(g) == PBTree && return ResumableFunctions.@yield g | |
for i ∈ 1:g.size-1 | |
ResumableFunctions.@yield PBTree(g.Y[i,:]) | |
end | |
return PBTree(g.Y[end,:]) | |
end | |
import Base.convert | |
convert(::Type{Array{PBTree,1}},g::Grove) = [trees(g)...] |
View tamari-grove-commutativity.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Dendriform, LightGraphs, GraphPlot, Colors | |
function highlight_sum(a::Grove,b::Grove) | |
d = a.degr + b.degr | |
g = DiGraph(Int(Cn(d))) | |
for i = 1:Int(Cn(d)) | |
u = Dendriform.posetnext(PBTree(d,i)) | |
for t in u | |
add_edge!(g,i,treeindex(t)) | |
end | |
end |
View jones-prime-formula.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
g(y::BigInt,x::BigInt) = BigInt((abs(y-x) + y-x)//2) | |
r(y::BigInt,x::BigInt)::BigInt = (x==0) ? y : mod(y,x) | |
p(n::Int) = sum(i->g(BigInt(1),g(sum(j->r((factorial(g(BigInt(j),BigInt(1))))^2,BigInt(j)),0:i),BigInt(n))),0:n^2) | |
map(p,1:17) |