Created
October 12, 2013 08:20
-
-
Save chanmix51/6947361 to your computer and use it in GitHub Desktop.
LTSpice models for vacuum tubes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*-------------------------------------------------------------------------- | |
* Model generated by Motega software: | |
* | |
* Modeling Of Tubes Employing Genetic Algorithms | |
* | |
* Models contain 1G resistors from all nodes to earth in order to avoid | |
* floating nodes. Triode and tetrode/pentode models contain a diode for | |
* simulating grid current. | |
* | |
* Non-commercial use is permitted, but at your own risk... This model | |
* is provided "as is", without warranty of any kind. In no event shall | |
* Jeroen Boschma be liable for any claim, damages or other liability, | |
* whether in an action of contract, tort or otherwise, arising from, | |
* out of or in connection with the tube model or the use or other | |
* dealings in the tube model. | |
* | |
* | |
* Copyright Jeroen Boschma | |
* www.boschma.com | |
* | |
* Motega V 1.0, 12-Sep-2010 23:58:18 | |
*-------------------------------------------------------------------------- | |
*-------------------------------------------------------------------------- | |
* Generic tetrode/pentode model | |
*-------------------------------------------------------------------------- | |
.SUBCKT TubePentode A Gr2 Gr1 K | |
+ PARAMS: ua=1 ug2=1 xa=1 xg2=1 qa=1 qg2=1 kg1=1 kg2=1 kvba=1 kvbg2=1 ce=1 | |
* | |
* Resistors in order to avoid floating nodes | |
* | |
R1 A 0 1G | |
R2 Gr2 0 1G | |
R3 Gr1 0 1G | |
R4 K 0 1G | |
* | |
* Intermediate expressions which simplify the current calculation | |
* | |
RE1 1 0 1G | |
E1 1 0 VALUE={xa + ce*PWR(V(A,K),2)} | |
RE2 2 0 1G | |
E2 2 0 VALUE={V(Gr2,K)*LOG(1 + EXP(qa*(1/ua + V(Gr1,K)/V(Gr2,K))))/qa} | |
RE3 3 0 1G | |
E3 3 0 VALUE={V(Gr2,K)*LOG(1 + EXP(qg2*(1/ug2 + V(Gr1,K)/V(Gr2,K))))/qg2} | |
* | |
* Actual current calculation | |
* | |
G1 A K VALUE={(PWR(V(2),V(1)) + PWRS(V(2),V(1)))*ATAN(V(A,K)/kvba)/kg1} | |
G2 Gr2 K VALUE={(PWR(V(3),V(1)) + PWRS(V(3),V(1)))*ATAN(V(A,K)/kvbg2)/kg2} | |
* | |
* Grid current modeling | |
* | |
RG Gr1 4 1K | |
D1 4 K DX | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
* | |
* Close the model | |
* | |
.ENDS | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 6Z43P | |
* Description : Pentode High S | |
* Direct heated : no | |
* Screen present : yes | |
*-------------------------------------------------------------------------- | |
.SUBCKT 6Z43P A Gr2 Gr1 K | |
* | |
* Resistors in order to avoid floating nodes | |
* | |
* RF F 0 1G | |
* RS S 0 1G | |
* | |
* Link to the generic model | |
* | |
XV1 A Gr2 Gr1 K TubePentode | |
+ PARAMS: ua=76.129 ug2=8.581K xa=759.154M xg2=952.570M qa=233.302 qg2=151.489 | |
+ kg1=68.216 kg2=142.261 kvba=19.057 kvbg2=2.179M ce=22.808U | |
* | |
* Capacitances | |
* | |
C1 K A 3.300P ; Cka | |
C2 Gr1 K 13.500P ; Cgk | |
* C3 Gr1 F 0.150P ; Cgh | |
C4 Gr1 A 0.075P ; Cga | |
.ENDS | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 6F12P | |
* Description : Pentode only | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.SUBCKT 6F12PP A Gr2 Gr1 K | |
* | |
* Resistors in order to avoid floating nodes | |
* | |
* RF F 0 1G | |
* | |
* Link to the generic model | |
* | |
XV1 A Gr2 Gr1 K TubePentode | |
+ PARAMS: ua=164.060 ug2=2.189K xa=442.879M xg2=687.751M qa=620.235 qg2=93.692 | |
+ kg1=89.910 kg2=161.636 kvba=11.369 kvbg2=655.832 ce=358.645N | |
* | |
* Capacitances | |
* | |
C1 K Gr1 6.600P ; Ckg1 | |
C2 K A 1.900P ; Cka | |
C3 Gr1 A 0.020P ; Cg1a | |
* | |
* Close the model | |
* | |
.ENDS | |
.subckt 6BQ5_EL84_T 1 6 3 | |
+ params: mu=18.8 ex=1.5 kg1=540 kp=165 kvb=174 rgi=1000 vct=0.01 | |
+ ccg=10.5p cgp=4.9p ccp=6.5p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
* | |
* AUTHOR: Totof | |
* | |
* | |
* | |
* * | |
* Copyleft 2011 | |
* | |
* liste des paramètres et ce que j'en ai déduit | |
* G = modifie la pente avant le coude pour les courbes d'anodes | |
* MU = modifie la pente après le coude pour les courbes d'anodes | |
* MU12 = modifie la hauteur du courant d'anode | |
* E1 = modifie l'écartement des courbes de courant d'anode | |
* K1 = modifie l'angle du coude du courant d'anode | |
* K2 = ? | |
* k3 = modifie l'écartement des courbes avant le coude pour les courbes d'anodes | |
* k4 = modifie la hauteur du courant d'écran | |
* K5 = modifie la valeur maxi du courant d'écran pour les faibles valeurs de Va | |
* K6 = modifie l'angle du coude du courant d'écran | |
* K = modifie l'écartement des courbes de courant d'écran | |
.SUBCKT 6Z52P 1 2 3 4 | |
* Anode G2 G1 Cathode | |
X1 1 2 3 4 PENTH1 G=.100m MU=10000 MU12=30.9 E1=4.6 k1=90.2 k2=2.1 k3=0.8 k4=85.6 k5=26.8 k6=10.6 K=4.50m | |
X2 3 4 Igrid ALPHA=.02m BETA=.1U | |
C2 1 4 1.8P | |
C3 3 1 .05P | |
C5 3 4 13.5P | |
RF1 1 4 200MEG | |
RF2 3 4 50MEG | |
RF3 2 4 100MEG | |
.ENDS | |
************************************** | |
**Modèle mathématique issu de EXCEM ** | |
************************************** | |
****************** | |
.SUBCKT PENTH1 A G2 G1 C | |
* Terme d'ecran | |
B1 10 0 V=IF(V(A,C)>0,(V(G2,C)/{MU12})*(V(A,C)-({k3}*V(G1,C)))/((V(G2,C)/{k1})+V(A,C)),0) | |
* Total | |
B2 A C I={G}*((V(G1,C)+V(10,0))+(V(A,C)/({MU}*(1-(V(G1,C)/{k2})))))**{E1} | |
* Calcul du courant d'ecran | |
B6 12 0 V=IF(V(G2,C)>0,(V(G1,C)+(V(G2,C)/{k4})),0) | |
B7 G2 C I={K}*(V(12,0)**1.5)*((V(A,C)+{k5})/(V(A,C)+{k6}))**3 | |
.ENDS | |
****************** | |
.SUBCKT Igrid G1 C | |
* Courant grille | |
B4 6 0 V=IF(V(G1,C)>0,{ALPHA}*V(G1,C)**1.5,{BETA}/-(V(G1,C)-.1)) | |
B5 G1 C I=V(6,0) | |
.ENDS | |
****************** | |
.SUBCKT 6V6 P S G K | |
.MODEL DX D(IS=1N RS=1 CJO=1PF TT=1N) | |
Esp 2 0 VALUE={V(P,K)+13.49*V(S,K)+130.4*V(G,K)} | |
E1 3 2 VALUE={5.521E-7*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} | |
E2 3 4 VALUE={5.521E-7*PWR(13.49*V(S,K),1.5)*V(P,K)/25} | |
E3 5 4 VALUE={(1-V(4,2)/ABS(V(4,2)+0.001))/2} | |
R1 5 0 1.0K | |
Gk S K VALUE={V(3,2)} | |
Gp P S VALUE={0.92*(V(3,4)*(1-V(5,4))+V(3,2)*V(5,4))} | |
R3 G 10 3k ; FOR GRID CURRENT | |
D3 10 K DX ; FOR GRID CURRENT | |
Cgk G K 4.5P | |
Cgs G S 4.5P | |
Cgp G P 0.7P | |
Cpk P K 7.5P | |
.ENDS | |
.SUBCKT 6AQ5 P S G K | |
.MODEL DX D(IS=1N RS=1 CJO=1PF TT=1N) | |
Esp 2 0 VALUE={V(P,K)+13.49*V(S,K)+130.4*V(G,K)} | |
E1 3 2 VALUE={5.521E-7*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} | |
E2 3 4 VALUE={5.521E-7*PWR(13.49*V(S,K),1.5)*V(P,K)/25} | |
E3 5 4 VALUE={(1-V(4,2)/ABS(V(4,2)+0.001))/2} | |
R1 5 0 1.0K | |
Gk S K VALUE={V(3,2)} | |
Gp P S VALUE={0.92*(V(3,4)*(1-V(5,4))+V(3,2)*V(5,4))} | |
R3 G 10 3k ; FOR GRID CURRENT | |
D3 10 K DX ; FOR GRID CURRENT | |
Cgk G K 8P | |
Cgs G S 4P | |
Cgp G P 0.4P | |
Cpk P K 8.5P | |
.ENDS | |
.SUBCKT 807 A S G K | |
Eat at 0 VALUE={0.636*ATAN(V(A,K)/5)} | |
Eme me 0 VALUE={PWR(LIMIT{V(A,K),0,2000},1.5)/1750} | |
Emu mu 0 VALUE={PWRS(V(G,K),1-(LIMIT{-V(G,K),30,9999}-30)/2000)} | |
Egs gs 0 VALUE={LIMIT{V(A,K)/2.5+V(S,K)*15.15+V(mu)*134,0,1E6}} | |
Egs2 gs2 0 VALUE={PWRS(V(gs),1.5)*0.8E-6} | |
Ecath cc 0 VALUE={LIMIT{V(gs2)*V(at),0,V(me)}} | |
Ga A K VALUE={V(cc)} | |
Escrn sc 0 VALUE={0.76*V(gs2)*(1.1-V(at))} | |
Gs S K VALUE={V(sc)*LIMIT{V(S,K),0,10}/10} | |
Gg G K VALUE={PWR(LIMIT{V(G,K)+1,0,1E6},1.5)*(1.25-V(at))*650E-6} | |
Cg1 G K 7.5p | |
Cgs G S 5.0p | |
Cak A K 8.2p | |
Cg1a G A 0.2p | |
.ENDS | |
.SUBCKT EL803 A S G K | |
Eat at 0 VALUE={limit(0.636*ATAN(limit(V(A,K),0,200)/5.39935952007373),0,1e6)} ;arctangent shaping | |
Eme me 0 VALUE={0.000459037814532166*PWR(V(A,K),1.19017332861348)} ; diodeline | |
Egs gs1 0 VALUE={LIMIT(V(A,K)/12216.2805361082+V(S,K)/21.6080182096161+V(G,K)/0.878756035095985 ,0,1E6)} ;the basic voltage | |
Egs2 gs2 0 VALUE={PWRS(V(gs1),1.48413876122404)*0.0030939788209251} ;raise to the power and mult by perveance | |
Ga A K VALUE={limit(V(gs2)*V(at),0,V(me))} ; anode current limited per diode line | |
Gs S K VALUE={1.06934398863015*V(gs2)*(1.1-V(at))}; screen current, reverse arctangent shaping | |
Gg G K VALUE={PWR(LIMIT(V(G,K)+-0.2500372391271 ,0,1E6),1.5)*(1.25-V(at))*-0.00098104133922726} ; grid current | |
C1 G K 0.15p | |
C2 A K 8p | |
C3 G A 0.12p | |
C4 G S 10.4p | |
.ENDS EL803 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 6F12P | |
* Description : Triode only | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.SUBCKT 6F12PT 1 2 3 ; P G C (Triode) 07 Nov 2004 | |
+ params: | |
+ mu = 137.721 | |
+ ex = 1.60508 | |
+ kg1 = 55.4076 | |
+ kp = 593.725 | |
+ kvb = 11210.8 | |
+ ccg = 4.6e-12 | |
+ cgp = 1.6e-12 | |
+ ccp = 2.6e-13 | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
.ENDS | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 6SN7 6N8S | |
* Description : Triode | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.subckt 6SN7 P G K | |
Bp P K I=(0.02003791851m)*uramp(V(P,K)*ln(1.0+(-0.07740549711)+exp((4.618036737)+(4.618036737)*((20.288965)+(-110.4389272m)*V(G,K))*V(G,K)/sqrt((28.13407639)**2+(V(P,K)-(7.118597372))**2)))/(4.618036737))**(1.380047579) | |
Cgp G P 4.0pF | |
Cgk G K 2.6pF | |
Cpk P K 0.7pF | |
.ends 6SN7 | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 12AX7 ECC83 6N2P | |
* Description : Triode | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.subckt 12AX7 P G K | |
Bp P K I=((0.001149607902m)+(0.0001063352726m)*V(G,K))*uramp((91.16514401)*V(G,K)+V(P,K)+(52.29904339))**1.5 * V(P,K)/(V(P,K)+(2.177964467)) | |
Cgp G P 1.7pF | |
Cgk G K 1.6pF | |
Cpk P K 0.46pF | |
.ends 12AX7 | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 12AU7 ECC82 | |
* Description : Triode | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.subckt 12AU7 P G K | |
Bp P K I=(0.01701593477m)*uramp(V(P,K)*ln(1.0+(-0.1251806139)+exp((1.234948774)+(1.234948774)*((34.50197863)+(-26.60747394m)*V(G,K))*V(G,K)/sqrt((22.53603268)**2+(V(P,K)-(-4.400778147))**2)))/(1.234948774))**(1.369425091) | |
Cgp G P 1.5pF | |
Cgk G K 1.6pF | |
Cpk P K 0.4pF | |
.ends 12AU7 | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 12AT7 ECC81 | |
* Description : Triode | |
* Direct heated : no | |
* Screen present : no | |
*-------------------------------------------------------------------------- | |
.subckt 12AT7 P G K | |
Bp P K I=(0.0253900853m)*uramp(V(P,K)*ln(1.0+(-0.002225559277)+exp((2.167148412)+(2.167148412)*((98.41058113)+(-236.6932297m)*V(G,K))*V(G,K)/sqrt((21.28395113)**2+(V(P,K)-(-33.16307233))**2)))/(2.167148412))**(1.238709418) | |
Cgp G P 1.5pF | |
Cgk G K 2.2pF | |
Cpk P K 0.5pF | |
.ends 12AT7 | |
*-------------------------------------------------------------------------- | |
* Specialized tube model | |
* | |
* Type : 6N16B | |
* Description : Triode | |
* Direct heated : no | |
* Screen present : yes | |
*-------------------------------------------------------------------------- | |
*.SUBCKT 6N16B 1 2 3 ; P G K ; | |
*+ PARAMS: CCG=2.7P CGP=1.5P CCP=1.65P RGI=2000 | |
*+ MU=25.96 EX=1.79 KG1=557.56 KP=137.33 KVB=391.918 | |
*E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
*RE1 7 0 1G | |
*G1 1 3 VALUE={((PWR(V(7),EX)+PWRS(V(7),EX))/(2*KG1))} | |
*C1 2 3 {CCG} ; CATHODE GRID | |
*C2 2 1 {CGP} ; GRID-PLATE | |
*C3 1 3 {CCP} ; CATHODE-PLATE | |
*D3 5 3 DX ; FOR GRID CURRENT | |
*R1 2 5 {RGI} ; FOR GRID CURRENT | |
*.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
*.ENDS 6N16B | |
.subckt 01A 1 6 3 | |
+ params: mu=7.7 ex=1.512 kg1=8700 kp=57 kvb=1116 rgi=1000 vct=.372 | |
+ ccg=3.1p cgp=8.1p ccp=2.2p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 2A3 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= .003 RAF= 1.92357959289845E-03 RAS= .98 CDO= 0 | |
+ RAP= 0.005 ERP= 1.55 | |
+ MU0= 4.2 MUR= 0.0006 EMC= 0.0000868 | |
+ GCO=-0.2 GCF= 0.00001 | |
+ CGA=1.65E-11 CGK=7.50E-12 CAK=5.50E-12 | |
.ENDS | |
.SUBCKT 2A3_sofia A G K | |
+PARAMS: MU=4.545 ERP=1.5 | |
+ KK1=1744 KP=41.4 KVB=17.1 vg0=1.5 | |
+ CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 2C51 1 6 3 | |
+ params: mu=40.9 ex=1.71 kg1=825 kp=126 kvb=708 rgi=2000 vct=.01 | |
+ ccg=2.3p cgp=1.3p ccp=1.3p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 3A5 1 2 3 ; uses vacuum diode grid current model | |
+ params: mu=16.13 ex=1.526 kg1=3270 kp=126 kvb=2 rgi=3000 | |
+ ccg=0.9p cgp=3.2p ccp=1.0p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=60u rs=1 cjo=1pf N=180) | |
.ends | |
.SUBCKT 3CX300 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.00536 RAS= 1 CDO= 0 | |
+ RAP= 0.005 ERP= 1.25 | |
+ MU0= 8.321 MUR= 0.0012 EMC= 0.000533 | |
+ GCO= 0 GCF= 0.0001 | |
+ CGA=1.00E-11 CGK=2.50E-11 CAK=1.00E-12 | |
.ENDS | |
.SUBCKT 6AN8T 1 2 3 ; P G C; NEW MODEL ; TRIODE SECTION | |
+ PARAMS: MU=21.5 EX=1.3 KG1=1180 KP=84 KVB=300 RGI=2000 | |
+ CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P | |
C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P | |
C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT 6AS7_6080 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 0.01 RAF= 0.0058 RAS= 0.7 CDO= 0 | |
+ RAP= 0.035 ERP= 1.5 | |
+ MU0= 2.05 MUR= 0.0017 EMC= 0.0005 | |
+ GCO= 0 GCF= 0 | |
+ CGA=1.10E-11 CGK=8.00E-12 CAK=3.00E-12 | |
.ENDS | |
.subckt 6AQ8_ECC85 1 6 3 | |
+ params: mu=68.2 ex=1.386 kg1=487 kp=234 kvb=1680 rgi=2000 vct=.346 | |
+ ccg=3.0p cgp=1.5p ccp=1.2p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 6BM8 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.030667 RAS= 5 CDO=-0.5 | |
+ RAP= 0.587 ERP= 1.5 | |
+ MU0= 50 MUR= 0.035 EMC= 0.00000256 | |
+ GCO= 0 GCF= 0 | |
+ CGA=4.00E-12 CGK=2.70E-12 CAK=4.00E-12 | |
.ENDS | |
.SUBCKT 6C33C A G K | |
+PARAMS: MU=2.67 ERP=1.45 | |
+ KK1=418 KP=14.6 KVB=5 | |
+ CGA=30p CGK=30p CAK=10p RGI=1000 | |
.func V_6() {KP*( (1/MU)+(V(G,K)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.SUBCKT 6C4C A G K | |
+PARAMS: MU=4.4 ERP=1.5 | |
+ KK1=2136 KP=49.5 KVB=23 vg0=-3 | |
+ CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000 ;(2A3 values) | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 6C45-PE 1 2 3 ; plate grid cathode | |
+ params: mu=47.4501 ex=2.374193 kg1=268.615545 kp=485.735371 kvb=501.503636 rgi=300 | |
+ ccg=2.4p cgp=4p ccp=.7p | |
e1 7 0 value= {v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=10pf tt=1n) | |
.ends | |
.subckt 6CG7 1 6 3 | |
+ params: mu=21.17 ex=1.442 kg1=1920 kp=150 kvb=10 rgi=1000 vct=.48 | |
+ ccg=2.3p cgp=4.9p ccp=2.2p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 6CW4 1 2 3 ; placca griglia catodo NUVISTOR R.C.A. | |
+ params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200 | |
+ ccg=4.1p cgp=.92p ccp=.18p | |
+ a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64 | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
e2 8 0 value= | |
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d} | |
re2 8 0 1g | |
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=10pf tt=1n) | |
.ends | |
.SUBCKT 6DJ8 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.09 RAS= 0.2 CDO= 0 | |
+ RAP= 0 ERP= 1.35 | |
+ MU0= 33 MUR= 0.02 EMC= 0.0000795 | |
+ GCO=-0.2 GCF= 0 | |
+ CGA=1.40E-12 CGK=3.30E-12 CAK=1.80E-12 | |
.ENDS | |
.subckt 6H30 P G K | |
Bp P K I=(0.3800825583m)*uramp(V(P,K)*ln(1.0+(-0.02540430176)+exp((7.018331616)+(7.018331616)*((15.85848193)+(-66.34009258m)*V(G,K))*V(G,K)/sqrt((27.2125877)**2+(V(P,K)-(5.267363515))**2)))/(7.018331616))**(1.211856956) | |
.ends 6H30 | |
.subckt 6HV5 P G K | |
Bp P K I=((0.002251977888m)+(-5.369015936e-005m)*V(G,K))*uramp((370.7812379)*V(G,K)+V(P,K)+(423.2938397))**1.5 * V(P,K)/(V(P,K)+(57.14378617)) | |
.ends | |
.subckt 6J4 1 6 3 | |
+ params: mu=94.8 ex=1.274 kg1=103 kp=153 kvb=792 rgi=2000 vct=.122 | |
+ ccg=5.5p cgp=4.0p ccp=5.0p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 6J6 1 6 3 | |
+ params: mu=38.9 ex=1.484 kg1=780 kp=162 kvb=1176 rgi=2000 vct=.384 | |
+ ccg=2.6p cgp=1.5p ccp=1.6p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 6N1P A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.01 RAS= 1 CDO= 0 | |
+ RAP= 0 ERP= 1.6 | |
+ MU0= 37.5 MUR= 0.01 EMC= 0.000005 | |
+ GCO= 0 GCF= 0 | |
+ CGA=1.60E-12 CGK=3.20E-12 CAK=1.50E-12 | |
.ENDS | |
.subckt 6N6P 1 6 3 | |
+ params: mu=18.8 ex=1.666 kg1=810 kp=85.5 kvb=600 rgi=2000 vct=.02 | |
+ ccg=4.4p cgp=1.7p ccp=1.85p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 6SL7GT P G K | |
E1 2 0 VALUE={V(P,K)+65.5*V(G,K)} | |
R1 2 0 1.0K | |
Gp P K VALUE={1.54E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} | |
Cgk G K 3.2P | |
Cgp G P 2.8P | |
Cpk P K 3.5P | |
.ENDS | |
.SUBCKT 6SN7GTB A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.02 RAS= 2 CDO= 0 | |
+ RAP= 0.002 ERP= 1.4 | |
+ MU0= 19.2642 MUR= 0.006167 EMC= 0.0000189 | |
+ GCO= 0 GCF= 0.000213 | |
+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13 | |
.ENDS | |
.SUBCKT 6SN7_sofia A G K | |
+PARAMS: MU=21.95 ERP=1.5 | |
+ KK1=2100 KP=169 KVB=4 vg0=-.45 | |
+ CGA=4p CGK=3p CAK=1.2p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 12A4 P G K | |
Bp P K I=(0.04842259598m)*uramp(V(P,K)*ln(1.0+(-0.1171696503)+exp((6.561427624)+(6.561427624)*((18.54552963)+(-100.6055605m)*V(G,K))*V(G,K)/sqrt((40.8808477)**2+(V(P,K)-(25.43292096))**2)))/(6.561427624))**(1.491616235) | |
.ends | |
.SUBCKT 12AT7_ECC81 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.09869 RAS= 1 CDO=-0.5 | |
+ RAP= 0.1 ERP= 1.4 | |
+ MU0= 45.093 MUR= 0.012937 EMC= 0.00000863 | |
+ GCO=-0.5 GCF= 0.00012 | |
+ CGA=1.60E-12 CGK=2.30E-12 CAK=4.00E-13 | |
.ENDS | |
.SUBCKT 12AU7_ECC82 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.000001 RAS= 2.065382774 CDO= 0 | |
+ RAP= 0.18 ERP= 1.4 | |
+ MU0= 17.08958652 MUR= 0.010938375 EMC= 0.0000183 | |
+ GCO= 0 GCF= 0.00012 | |
+ CGA=1.60E-12 CGK=1.80E-12 CAK=4.50E-13 | |
.ENDS | |
.subckt 12AV7 1 6 3 | |
+ params: mu=45 ex=1.4 kg1=465 kp=132 kvb=181 rgi=2000 vct=.356 | |
+ ccg=3.2p cgp=1.9p ccp=1.4p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 12AX7_ECC83 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 0.000016 RAF= 0.076498 RAS= 1 CDO=-0.53056 | |
+ RAP= 0.18 ERP= 1.5 | |
+ MU0= 87.302 MUR=-0.013621 EMC= 0.00000111 | |
+ GCO=-0.2 GCF= 0.00001 | |
+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13 | |
.ENDS | |
.subckt 12AY7_6072A 1 6 3 | |
+ params: mu=45 ex=1.47 kg1=2355 kp=300 kvb=136.5 rgi=950 vct=.704 | |
+ ccg=1.3p cgp=1.3p ccp=0.6p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} ; offset grid voltage | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 12B4 P G K | |
Bp P K I=(0.7475666979m)*uramp(V(P,K)*ln(1.0+(-0.03869784353)+exp((5.06748961)+(5.06748961)*((7.783573199)+(-7.718521472m)*V(G,K))*V(G,K)/sqrt((16.65965534)**2+(V(P,K)-(1.974437216))**2)))/(5.06748961))**(1.293967904) | |
.ends 12B4 | |
.SUBCKT 12BH7A P G K | |
E1 2 0 VALUE={V(P,K)+16.64*V(G,K)} | |
R1 2 0 1.0K | |
Gp P K VALUE={22.34E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} | |
Cgk G K 3.2P | |
Cgp G P 2.6P | |
Cpk P K 0.5P | |
.ENDS | |
.SUBCKT 71a A G K | |
+PARAMS: MU=3.15 ERP=1.5 | |
+ KK1=6350 KP=26.5 KVB=9 vg0=0.5 va0=6.0 | |
+ CGA=7.4p CGK=3.7p CAK=2.1p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K)-va0)/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 75TL P G K | |
Bp P K I=((0.008071931767m)+(3.503608694e-005m)*V(G,K))*uramp((11.35872332)*V(G,K)+V(P,K)+(-21.07038254))**1.5 * V(P,K)/(V(P,K)+(-4.024455933)) | |
.ends | |
.SUBCKT 76 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 10 RAF= 0.015 RAS= 1.8 CDO= 0 | |
+ RAP= 0 ERP= 1.6 | |
+ MU0= 12.8 MUR= 0.001 EMC= 0.000008 | |
+ GCO= 0 GCF= 0 | |
+ CGA=2.80E-12 CGK=3.50E-12 CAK=2.50E-12 | |
.ENDS | |
.subckt 211_VT4C 1 3 4 ; TRIODO DI POTENZA D.H.T. ( G.E.) | |
g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010} | |
c1 3 4 6p | |
c2 3 1 14.5p | |
c3 1 4 5.5p | |
r1 3 5 10k | |
d1 1 2 dx | |
d2 4 2 dx2 | |
d3 5 4 dx | |
.model dx d(is=1p rs=1) | |
.model dx2 d(is=1n rs=1) | |
.ends | |
.SUBCKT GL211 P G K | |
E1 2 0 VALUE={V(P,K)+12.11*V(G,K)} | |
R1 2 0 1.0K | |
Gp P K VALUE={9.39E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} | |
Gg G K VALUE={358E-6*(PWR(V(G,K),1.5)+PWRS(V(G,K),1.5))/2} | |
Cgk G K 6.0P | |
Cgp G P 14.5P | |
Cpk P K 5.5P | |
.ENDS | |
.SUBCKT 300B A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 10 RAF= 0.00311 RAS= 1.013608 CDO= 0 | |
+ RAP= 0 ERP= 1.5 | |
+ MU0= 3.7992 MUR= 0.000362 EMC= 0.000116 | |
+ GCO= 0 GCF= 0 | |
+ CGA=1.50E-11 CGK=9.00E-12 CAK=4.30E-12 | |
.ENDS | |
.SUBCKT 300B_sofia A G K | |
+PARAMS: MU=4.16 ERP=1.5 | |
+ KK1=1922 KP=45.5 KVB=7 vg0=3 | |
+ CGA=15.p CGK=9.p CAK=4.3p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 437 P G K | |
Bp P K I=(0.02254655914m)*uramp(V(P,K)*ln(1.0+(-0.4880850946)+exp((0.9206824464)+(0.9206824464)*((62.11491976)+(-2109.77701m)*V(G,K))*V(G,K)/sqrt((52.5190469)**2+(V(P,K)-(21.20975915))**2)))/(0.9206824464))**(1.712612552) | |
.ends | |
.SUBCKT SV572_3 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 0.0018 RAF= 0.0012 RAS= 0.5 CDO= 0 | |
+ RAP= 0 ERP= 1.4 | |
+ MU0= 3.79928 MUR= 0.0002 EMC= 0.0000425 | |
+ GCO= 0 GCF= 0.0000349 | |
+ CGA=4.00E-12 CGK=4.00E-12 CAK=1.00E-12 | |
.ENDS | |
.SUBCKT SV572_10 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.4 LIF= 0.0008 RAF= 0.001 RAS= 1 CDO= 0 | |
+ RAP=-0.00117 ERP= 1.38 | |
+ MU0= 10 MUR= 0.0001 EMC= 0.0000272 | |
+ GCO=-0.2 GCF= 0.0003 | |
+ CGA=5.00E-12 CGK=6.40E-12 CAK=1.00E-12 | |
.ENDS | |
.subckt 801a 1 2 3 ; relatively accurate A1 and A2 model | |
+ params: mu=8.06 ex=1.596 kg1=11520 kp=162 kvb=10 rgi=180 | |
+ ccg=4.5p cgp=6p ccp=1.5p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g ; note in e1: grid voltage is behind r1. modl mu drop at hi +grid | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
r1 2 5 {rgi} | |
g2 5 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+120))} ; g1 curr | |
rcg 2 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
.ends | |
.subckt 811a 1 2 3 ; | |
+ params: mu=160 ex=1.317 kg1=1350 kp=100 kvb=1400 rgi=2000 | |
+ ccg=2.3p cgp=2.4p ccp=.9p | |
+ a=1.6667e-10 b=-.0000002875 c=0.0001758333 d=1.275 | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
e2 8 0 value= | |
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d} | |
re2 8 0 1g | |
e3 9 0 table {v(2,3)} = | |
+ (-1 1.1e-16) | |
+ (0, .6e-4) (20, 5.38e-4) | |
+ (40, 6.25e-4) (60, 7.41e-4) | |
re3 9 0 1g | |
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))*v(9)} | |
rcp 1 3 100k | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=70u rs=1 cjo=1pf N=180) | |
.ends | |
.SUBCKT 845 A G K | |
+PARAMS: MU=5.355 ERP=1.5 | |
+ KK1=6323 KP=85.64 KVB=65.8 vg0=3 va0=0 | |
+ CGA=13.5E-12 CGK=6E-12 CAK=6.5E-12 RGI=4000; | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K)-va0)/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.subckt 864 1 6 3 | |
+ params: mu=8.2 ex=1.372 kg1=9540 kp=165 kvb=2.84 rgi=6000 vct=.195 | |
+ ccg=3.3p cgp=5.3p ccp=2.1p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 1626 1 6 3 | |
+ params: mu=5.17 ex=1.652 kg1=11700 kp=16.1 kvb=11424 rgi=4000 vct=.01 | |
+ ccg=3.2p cgp=4.4p ccp=3.4p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=60u rs=1 cjo=1pf n=170) | |
.ends | |
.subckt 5670 1 6 3 | |
+ params: mu=40.9 ex=1.71 kg1=825 kp=126 kvb=708 rgi=2000 vct=.01 | |
+ ccg=2.2p cgp=1.1p ccp=1.0p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 5676 1 2 3 | |
+ params: mu=16.13 ex=1.526 kg1=3270 kp=126 kvb=2 rgi=5000 | |
+ ccg=1.3p cgp=4.0p ccp=2.0p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT 5687wa A G K | |
+PARAMS: MU=18.14 ERP=1.48 | |
+ KK1=665 KP=128.5 KVB=13.6 vg0=-0.7 | |
+ CGA=5.2p CGK=5.2p CAK=0.8p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.SUBCKT 5751 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1.5 LIF= 0.000016 RAF= 0.075772 RAS= 1 CDO=-0.53056 | |
+ RAP= 0.131285 ERP= 1.5 | |
+ MU0= 62.94685 MUR=-0.0111 EMC= 0.00000142 | |
+ GCO=-0.2 GCF= 0.00001 | |
+ CGA=1.40E-12 CGK=1.40E-12 CAK=4.50E-13 | |
.ENDS | |
.subckt 5842_417 1 2 3 | |
+ params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446 rgi=2000 | |
+ ccg=9p cgp=1.8p ccp=.48p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=10pf tt=1n) | |
.ends | |
.subckt 6948 1 6 3 | |
+ params: mu=87 ex=1.568 kg1=1215 kp=228 kvb=15.75 rgi=3000 vct=.656 | |
+ ccg=1.6p cgp=.75p ccp=.25p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.subckt 7119 P G K | |
Bp P K I=(0.2025738143m)*uramp(V(P,K)*ln(1.0+(0.04163079423)+exp((3.21147579)+(3.21147579)*((23.87181902)+(-454.0996836m)*V(G,K))*V(G,K)/sqrt((33.58240995)**2+(V(P,K)-(16.01952758))**2)))/(3.21147579))**(1.235675486) | |
.ends | |
.subckt 8532 1 6 3 | |
+ params: mu=78.6 ex=1.288 kg1=127 kp=190 kvb=288 rgi=2000 vct=.02 | |
+ ccg=7.5p cgp=2.8p ccp=5.0p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
v1 5 6 {vct} | |
d3 6 3 dx | |
.model dx d(is=1n rs=1 cjo=1pf tt=1n) | |
.ends | |
.SUBCKT D3a_7721 A G K | |
XV1 A G K TRIODENH | |
+PARAMS: LIP= 1 LIF= 1E-3 RAF= 240E-3 RAS= 2 CDO= -0.16 | |
+ RAP= 8E-3 ERP= 1.5 | |
+ MU0= 70 MUR= 1.5E-3 EMC= 4.7E-5 | |
+ GCO= -0.16 GCF= 213E-6 | |
+CGA= 2.7E-12 CGK= 7.3E-12 CAK=3.1E-12 | |
.ENDS | |
.subckt E182CC 1 2 3 ; placca griglia catodo | |
+ params: mu=24 ex=1.7 kg1=75 kp=320 kvb=300 rgi=2k | |
+ ccg=2.3p cgp=2.4p ccp=.9p | |
e1 7 0 value= | |
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=10pf tt=1n) | |
.ends | |
.subckt E88CC_6922 1 3 4 ; TRIODO DI SEGNALE (SQ PHILIPS) *modello sperimentale* | |
g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.1369*v(3,4)*v(3,4)-1.0232*v(3,4)+31.5035))+v(3,4)))))/120} | |
c1 3 4 3.3p | |
c2 3 1 1.4p | |
c3 1 4 2.8p | |
r1 3 5 10k | |
d1 1 2 dx | |
d2 4 2 dx2 | |
d3 5 4 dx | |
.model dx d(is=1p rs=1) | |
.model dx2 d(is=1n rs=1) | |
.ends ; eq. 6dj8, 7dj8, 6922 | |
.SUBCKT ECC99 A G K | |
+PARAMS: MU=23.33 ERP=1.48 | |
+ KK1=448.5 KP=172.65 KVB=8.92 | |
+ CGA=5p CGK=6p CAK=1p RGI=1000 | |
.func V_6() {KP*( (1/MU)+(V(G,K)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.SUBCKT EL34_sofia A G K | |
+PARAMS: MU=11.17 ERP=1.48 | |
+ KK1=597 KP=40.5 KVB=24.6 vg0=-.4 | |
+ CGA=1.1p CGK=15p CAK=8.5p RGI=4000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.SUBCKT GM70 A G K | |
+PARAMS: MU=8.037 ERP=1.5 | |
+ KK1=4121 KP=182.25 KVB=34 vg0=-5.7 | |
+ CGA=12.p CGK=8.p CAK=4.p RGI=1000 | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
.SUBCKT VV30B_sofia A G K | |
+PARAMS: MU=3.775 ERP=1.52 | |
+ KK1=2230 KP=43.6 KVB=5 vg0=4 | |
+ CGA=15.p CGK=9.p CAK=4.3p RGI=1000 ; 300b cap values | |
.func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} | |
E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} | |
Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} | |
GA A K VALUE={V(am)} | |
D3 5 k DX ; FOR GRID CURRENT | |
R1 g 5 {RGI} ; FOR GRID CURRENT | |
Rak A K 1G | |
Rgk G K 1G | |
C1 G K {CGK} | |
C2 G A {CGA} | |
C3 A K {CAK} | |
.MODEL DX D(IS=1N RS=1) | |
.ENDS | |
* Generic triode model: 6C19P | |
* Copyright 2003--2006 by Ayumi Nakabayashi, All rights reserved. | |
* Version 3.01, Generated on Wed Mar 22 17:19:54 2006 | |
.SUBCKT 6S19P A G K | |
BGG GG 0 V=V(G,K)+0.10684511 | |
BEP EP 0 V=URAMP(V(A,K))+1e-10 | |
BEG EG 0 V=URAMP(V(G,K))+1e-10 | |
BM1 M1 0 V=(0.32782347*(URAMP(V(EP)-1e-10)+1e-10))**-1.8567866 | |
BM2 M2 0 V=(0.44685593*(URAMP(V(GG)+V(EP)/1.687323)+1e-10))**3.3567866 | |
BP P 0 V=0.0032573245*(URAMP(V(GG)+V(EP)/3.7759889)+1e-10)**1.5 | |
BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0048409525*V(M1)*V(M2) | |
BIG IG 0 V=0.0016286622*V(EG)**1.5*(V(EG)/(V(EP)+V(EG))*1.2+0.4) | |
BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0030048458*V(EP)**1.5)))+1e-10*V(A,K) | |
BIGK G K I=V(IG) | |
* CAPS | |
CGA G A 8p | |
CGK G K 6.5p | |
CAK A K 2.5p | |
.ENDS | |
* 6N8S LTSpice model | |
* .subckt 6N8S_G P G K | |
* Bp P K I=(0.01426566929m)*uramp(V(P,K)*ln(1.0+(-0.2502838438)+exp((4.158339595)+(4.158339595)*((28.09578646)+(161.3001729m)*V(G,K))*V(G,K)/sqrt((-6.213441794e-06)**2+(V(P,K)-(-44.88870551))**2)))/(4.158339595))**(1.444372043) | |
* .ends 6N8S | |
* * 6S19P Spice 3F4 model | |
* .subckt 6S19P P G K | |
* Bp P K I=(0.003614146717m)*uramp(V(P,K)*ln(1.0+(-0.1222237273)+exp((4.37779085)+(4.37779085)*((2.57642359)+(0.1540553766m)*V(G,K))*V(G,K)/sqrt((50.74577601)^2+(V(P,K)-(-10.67155002))^2)))/(4.37779085))^(2.504102323) | |
* .ends 6S19P | |
* PC900 LTSpice model | |
.subckt PC900 P G K | |
Bp P K I=(0.002140170508m)*uramp(V(P,K)*ln(1.0+(0.02344764131)+exp((0.1654933313)+(0.1654933313)*((1012.353407)+(45664.70069m)*V(G,K))*V(G,K)/sqrt((119.4999393)**2+(V(P,K)-(43.55712427))**2)))/(0.1654933313))**(1.502978819) | |
.ends PC900 | |
.subckt 6C45-PE 1 2 3 ; plate grid cathode | |
+ params: mu=47.4501 ex=2.374193 kg1=268.615545 kp=485.735371 kvb=501.503636 rgi=300 | |
+ ccg=2.4p cgp=4p ccp=.7p | |
e1 7 0 value= {v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} | |
re1 7 0 1g | |
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} | |
rcp 1 3 1g | |
c1 2 3 {ccg} | |
c2 1 2 {cgp} | |
c3 1 3 {ccp} | |
r1 2 5 {rgi} | |
d3 5 3 dx | |
.model dx d(is=1n rs=1 cjo=10pf tt=1n) | |
.ends | |
.SUBCKT 6N23P 1 2 3 ; P G C (Triode) 26-Oct-2001 | |
+ PARAMS: MU=33.04 EX=1.220 KG1=212.4 KP=183.83 | |
+ KVB=300.0 VCT=0.00 RGI=2000 | |
+ CCG=3.6P CGP=1.5P CCP=2P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT 6N8S 1 2 3 ; P G C (Triode) 24-Oct-2001 | |
+ PARAMS: MU= 22.87 EX= 1.516 KG1=2209.8 KP=167.87 | |
+ KVB=155.4 VCT=0.70 RGI=1000 | |
+ CCG=3P CGP=1.2P CCP=4P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
*$ | |
* 6S31B PSpice model | |
.subckt 6S31B P G K | |
Gp P K VALUE={(0.1988913097m)*limit(V(P,K)*log(1.0+(0.2013646826)+exp((1.395045813)+(1.395045813)*((24.59849299)+(-157.6682693m)*V(G,K))*V(G,K)/sqrt((17.71050123)**2+(V(P,K)-(10.00128114))**2)))/(1.395045813),0.0,1.0e16)**(1.327315281)} | |
.ends 6S31B | |
* EL360 PSpice model | |
.subckt EL360 P G K | |
Gp P K VALUE={(0.3524190389m)*limit(V(P,K)*log(1.0+(-0.06859204498)+exp((2.624540677)+(2.624540677)*((5.264539741)+(-20.87518491m)*V(G,K))*V(G,K)/sqrt((40.72821505)**2+(V(P,K)-(25.82179747))**2)))/(2.624540677),0.0,1.0e16)**(1.398000602)} | |
C1 G K 17.5P | |
C2 K P 7.7P | |
C3 G P 1.1P | |
D1 1 K DX | |
R1 G 1 200 | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ends EL360 | |
* 6N16B PSpice model | |
.subckt 6N16B P G K | |
Gp P K VALUE={(0.004962431538m)*limit(V(P,K)*log(1.0+(0.08698102102)+exp((7.465673)+(7.465673)*((27.59140947)+(313.5342386m)*V(G,K))*V(G,K)/sqrt((16.94851566)**2+(V(P,K)-(-7.563231177))**2)))/(7.465673),0.0,1.0e16)**(1.801591602)} | |
C1 G K 2.7P | |
C2 P K 1.65P | |
C3 G P 1.5P | |
D1 1 K DX | |
R1 G 1 2000 | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ends 6N16B | |
.SUBCKT 6S41S 1 2 3 ; P G C (Triode) 30-Oct-2001 | |
+ PARAMS: MU=2.58 EX=1.450 KG1=689.1 KP=9.98 | |
+ KVB=300.0 VCT=0.00 RGI=1k | |
+ CCG=11P CGP=15P CCP=5P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT 6P13S_T 1 2 3 ; P G C (Pentode in Triode mode) 22-Mar-2007 | |
+ PARAMS: MU= 10.752 EX= 1.246 KG1=435 KP=48 | |
+ KVB= 1440 VCT= 0.314 RGI=1000 | |
+ CCG=6.5P CGP=7P CCP=11P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT EL36_T 1 2 3 ; P G C (Pentode in Triode mode) 22-Mar-2007 | |
+ PARAMS: MU= 6.8 EX= 1.33 KG1=330 KP=27 | |
+ KVB= 0.06 VCT= 0.001 RGI=1000 | |
+ CCG=6.5P CGP=7P CCP=11P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT 6N9S 1 2 3 ; P G C (Triode) 04-Mar-2006 | |
+ PARAMS: MU= 72.7 EX= 1.126 KG1= 1278.4 KP= 621.48 | |
+ KVB= 300.0 VCT= 0.0 RGI=1500 | |
+ CCG=2.5P CGP=2.8P CCP=1P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
.SUBCKT 6N3P-E 1 2 3 ; P G C (Triode) 16-Nov-2001 | |
+ PARAMS: MU=31.33 EX=1.979 KG1=1920.5 KP=211.72 | |
+ KVB=300.0 VCT=0.00 RGI=1k | |
+ CCG=2.5P CGP=1.3P CCP=1.4P | |
E1 7 0 VALUE= | |
+{V(1,3)/KP*LN(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} | |
RE1 7 0 1G | |
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} | |
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER | |
C1 2 3 {CCG} ; CATHODE-GRID; | |
C2 2 1 {CGP} ; GRID-PLATE; | |
C3 1 3 {CCP} ; CATHODE-PLATE; | |
D3 5 3 DX ; FOR GRID CURRENT | |
R1 2 5 {RGI} ; FOR GRID CURRENT | |
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) | |
.ENDS | |
*-------------------------------------------------------------------------- | |
* End of file | |
*-------------------------------------------------------------------------- |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment