Last active
March 8, 2016 16:30
-
-
Save chaosct/71e9f1412397f6e67d33 to your computer and use it in GitHub Desktop.
replicating XMM crash
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import xmm | |
import numpy as np | |
class GMM_regression(object): | |
def __init__(self): | |
self.clear(3,8) | |
def clear(self, idim = None, odim = None): | |
self.input_dimensions = idim or self.input_dimensions | |
self.output_dimensions = odim or self.output_dimensions | |
self.dimensions = self.input_dimensions + self.output_dimensions | |
self.labels = set() | |
self.now_training = None | |
self.now_performing = False | |
self.training_set = xmm.TrainingSet(xmm.BIMODAL) | |
self.training_set.set_dimension(self.dimensions) | |
self.training_set.set_dimension_input(self.input_dimensions) | |
self.gmm = xmm.GMMGroup(xmm.BIMODAL) | |
self.gmm.set_trainingSet(self.training_set) | |
self.output_vec = None | |
def record(self,n): | |
self.now_training = int(n) | |
def input(self,*l): | |
if self.now_training is not None: | |
self.labels.add(self.now_training) | |
if self.output_vec: | |
print "training", l+self.output_vec | |
self.training_set.recordPhrase(self.now_training,l+self.output_vec) | |
elif self.now_performing: | |
self.gmm.performance_update(l) | |
self.send('/instant',*self.gmm.results_instant_likelihoods) | |
self.send('/normalized',*self.gmm.results_normalized_likelihoods) | |
self.send('/log',*self.gmm.results_log_likelihoods) | |
self.send('/predicted',*self.gmm.results_predicted_output) | |
def output(self,*l): | |
self.output_vec = l | |
def train(self, nbmc=10, vo1=1., vo2=0.01): | |
for n in self.labels: | |
self.training_set.setPhraseLabel(n,xmm.Label(n+1)) | |
self.gmm.set_nbMixtureComponents(nbmc) | |
self.gmm.set_varianceOffset(vo1, vo2) | |
self.gmm.train() | |
print "number of models: ", self.gmm.size() | |
for label in self.gmm.models.keys(): | |
print "model", label.getInt(), ": trained in ", self.gmm.models[label].trainingNbIterations, \ | |
"iterations, loglikelihood = ", self.gmm.models[label].trainingLogLikelihood | |
def perform(self, lw=40): | |
self.gmm.set_likelihoodwindow(40) | |
self.gmm.performance_init() | |
self.now_training = None | |
self.now_performing = True | |
def send(self, addr, *args): | |
print addr, args | |
gmm = GMM_regression() | |
gmm.clear(3,8) | |
gmm.record(0) | |
gmm.output(1,2,3,4,5,6,7,8) | |
for n in range(10): | |
gmm.input(2,3,4) | |
gmm.record(1) | |
gmm.output(8,7,6,5,4,3,2,1) | |
for n in range(10): | |
gmm.input(3,4,5) | |
gmm.train() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment