Created
January 26, 2023 16:29
Normalizer for lambda calculus
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module newtry6 where | |
-- derived from https://gist.github.com/rntz/2543cf9ef5ee4e3d990ce3485a0186e2 | |
-- http://eprints.nottingham.ac.uk/41385/1/th.pdf | |
open import Level | |
open import Function using (id; _∘_) | |
infixr 5 _⇒_ | |
data Ty : Set where | |
base : Ty | |
_⇒_ : Ty → Ty → Ty | |
data Con : Set where | |
∙ : Con | |
_,_ : Con → Ty → Con | |
data Tm : Con → Ty → Set | |
data Tms : Con → Con → Set where | |
_∘t_ : ∀{X Y Z} → Tms Y Z → Tms X Y → Tms X Z | |
Id : ∀{X} → Tms X X | |
ε : ∀{X} → Tms X ∙ | |
_,_ : ∀{X Y A} → (p : Tms X Y) → Tm X A → Tms X (Y , A) | |
π₁ : ∀{X Y A} → Tms X (Y , A) → Tms X Y | |
data Tm where | |
_[_] : ∀{X Y A} → Tm X A → (p : Tms Y X) → Tm Y A | |
π₂ : ∀{X Y A} → (p : Tms X (Y , A)) → Tm X A | |
lam : ∀{X A B} → Tm (X , A) B → Tm X (A ⇒ B) | |
app : ∀{X A B} → Tm X (A ⇒ B) → Tm (X , A) B | |
wk : ∀{X A} → Tms (X , A) X | |
wk = π₁ Id | |
vz : ∀{X A} → Tm (X , A) A | |
vz = π₂ Id | |
vs : ∀{X A B} → Tm X A → Tm (X , B) A | |
vs x = x [ wk ] | |
<_> : ∀{Γ}{A : Ty} → Tm Γ A → Tms Γ (Γ , A) | |
< t > = Id , t | |
infixl 4 _$_ | |
_$_ : ∀ {Γ}{A : Ty}{B : Ty}(t : Tm Γ (A ⇒ B))(u : Tm Γ A) → Tm Γ B | |
t $ u = (app t) [ < u > ] | |
[_⊢_] : Con → Ty → Set₁ | |
[ X ⊢ base ] = Lift (suc zero) (Tm X base) | |
[ X ⊢ a ⇒ b ] = ∀ {Y} (s : Tms Y X) → [ Y ⊢ a ] → [ Y ⊢ b ] | |
reify : ∀{a X} → [ X ⊢ a ] → Tm X a | |
reflect : ∀{a X} → Tm X a → [ X ⊢ a ] | |
reify {base} (lift lower) = lower | |
reify {a ⇒ a₁} f = lam (reify (f (π₁ Id) (reflect vz))) | |
reflect {base} i = lift i | |
reflect {a ⇒ b} R s = reflect ∘ _$_ (R [ s ]) ∘ reify | |
data In : Con → Ty → Set where | |
Z : ∀{X x} → In (X , x) x | |
S : ∀{X x y} → In X x → In (X , y) x | |
[_⊢*_] : Con -> Con -> Set₁ | |
[ X ⊢* Y ] = ∀{a} -> In Y a -> [ X ⊢ a ] | |
rename : ∀{X Y} (s : Tms Y X) {a} -> [ X ⊢ a ] -> [ Y ⊢ a ] | |
rename s {base} (lift l) = lift (l [ s ]) | |
rename s {a ⇒ b} f t = f (s ∘t t) | |
extend : ∀{X Y a} -> [ Y ⊢* X ] -> [ Y ⊢ a ] -> [ Y ⊢* X , a ] | |
extend p x Z = x | |
extend p x (S z) = p z | |
inject : ∀{X a} → (x : In X a) → Tm X a | |
inject Z = vz | |
inject (S x) = vs (inject x) | |
id* : ∀ {X} -> [ X ⊢* X ] | |
id* = reflect ∘ inject | |
weaken : ∀{X Y A} → [ Y ⊢* X , A ] → [ Y ⊢* X ] | |
weaken x i = x (S i) | |
apply : ∀ {X W} (tms : Tms X W) {Y} → (p : [ Y ⊢* X ]) → [ Y ⊢* W ] | |
den : ∀{X a} -> Tm X a -> ∀ {Y} -> [ Y ⊢* X ] -> [ Y ⊢ a ] | |
apply (t ∘t v) p = apply t (apply v p) | |
apply Id p = p | |
apply (tms , x) p Z = den x p | |
apply (tms , x) p (S n) = apply tms p n | |
apply (π₁ tms) p n = apply tms p (S n) | |
den (M [ tms ]) p = den M (apply tms p) | |
den (π₂ tms) p = (apply tms p) Z | |
den (lam M) p s x = den M (extend (rename s ∘ p) x) | |
den (app M) p = den M (weaken p) Id (p Z) | |
normalize : ∀{X a} → Tm X a → Tm X a | |
normalize M = reify (den M id*) | |
cnat : Ty | |
cnat = (base ⇒ base) ⇒ base ⇒ base | |
czero : ∀{G} → Tm G cnat | |
czero = lam (π₂ Id) | |
csuc : ∀{G} → Tm G (cnat ⇒ cnat) | |
csuc = lam (lam (lam (vs vz $ (vs (vs vz) $ vs vz $ vz)))) | |
ctwo : ∀{G} → Tm G cnat | |
ctwo = csuc $ (csuc $ czero) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment