Skip to content

Instantly share code, notes, and snippets.

@chfle
Created April 21, 2021 18:04
Show Gist options
  • Save chfle/2e2710d3b14ae1717f055bb00783f9f0 to your computer and use it in GitHub Desktop.
Save chfle/2e2710d3b14ae1717f055bb00783f9f0 to your computer and use it in GitHub Desktop.
# For Rapberry Pi Pico
# From kevinmcaleer
from micropython import const
import ustruct
import utime
from machine import Pin, I2C
# from machine import Timer
# import time
_IO_TIMEOUT = 1000
_SYSRANGE_START = const(0x00)
_EXTSUP_HV = const(0x89)
_MSRC_CONFIG = const(0x60)
_FINAL_RATE_RTN_LIMIT = const(0x44)
_SYSTEM_SEQUENCE = const(0x01)
_SPAD_REF_START = const(0x4f)
_SPAD_ENABLES = const(0xb0)
_REF_EN_START_SELECT = const(0xb6)
_SPAD_NUM_REQUESTED = const(0x4e)
_INTERRUPT_GPIO = const(0x0a)
_INTERRUPT_CLEAR = const(0x0b)
_GPIO_MUX_ACTIVE_HIGH = const(0x84)
_RESULT_INTERRUPT_STATUS = const(0x13)
_RESULT_RANGE_STATUS = const(0x14)
_OSC_CALIBRATE = const(0xf8)
_MEASURE_PERIOD = const(0x04)
SYSRANGE_START = 0x00
SYSTEM_THRESH_HIGH = 0x0C
SYSTEM_THRESH_LOW = 0x0E
SYSTEM_SEQUENCE_CONFIG = 0x01
SYSTEM_RANGE_CONFIG = 0x09
SYSTEM_INTERMEASUREMENT_PERIOD = 0x04
SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A
GPIO_HV_MUX_ACTIVE_HIGH = 0x84
SYSTEM_INTERRUPT_CLEAR = 0x0B
RESULT_INTERRUPT_STATUS = 0x13
RESULT_RANGE_STATUS = 0x14
RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC
RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0
RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0
RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4
RESULT_PEAK_SIGNAL_RATE_REF = 0xB6
ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28
I2C_SLAVE_DEVICE_ADDRESS = 0x8A
MSRC_CONFIG_CONTROL = 0x60
PRE_RANGE_CONFIG_MIN_SNR = 0x27
PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56
PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57
PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64
FINAL_RANGE_CONFIG_MIN_SNR = 0x67
FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47
FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48
FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44
PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61
PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62
PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50
PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51
PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52
SYSTEM_HISTOGRAM_BIN = 0x81
HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33
HISTOGRAM_CONFIG_READOUT_CTRL = 0x55
FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72
CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20
MSRC_CONFIG_TIMEOUT_MACROP = 0x46
SOFT_RESET_GO2_SOFT_RESET_N = 0xBF
IDENTIFICATION_MODEL_ID = 0xC0
IDENTIFICATION_REVISION_ID = 0xC2
OSC_CALIBRATE_VAL = 0xF8
GLOBAL_CONFIG_VCSEL_WIDTH = 0x32
GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0
GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1
GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2
GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3
GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4
GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5
GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6
DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E
DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F
POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80
VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89
ALGO_PHASECAL_LIM = 0x30
ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30
class TimeoutError(RuntimeError):
pass
class VL53L0X():
def __init__(self, i2c, address=0x29):
self.i2c = i2c
self.address = address
utime.sleep_ms(100) # give the I2C time to init.
# Warning: Change the number if you get an error
self.init()
self._started = False
self.measurement_timing_budget_us = 0
self.set_measurement_timing_budget(self.measurement_timing_budget_us)
self.enables = {"tcc": 0,
"dss": 0,
"msrc": 0,
"pre_range": 0,
"final_range": 0}
self.timeouts = {"pre_range_vcsel_period_pclks": 0,
"msrc_dss_tcc_mclks": 0,
"msrc_dss_tcc_us": 0,
"pre_range_mclks": 0,
"pre_range_us": 0,
"final_range_vcsel_period_pclks": 0,
"final_range_mclks": 0,
"final_range_us": 0
}
self.vcsel_period_type = ["VcselPeriodPreRange", "VcselPeriodFinalRange"]
def ping(self):
self.start()
distance = self.read()
self.stop()
return distance
def _registers(self, register, values=None, struct='B'):
if values is None:
size = ustruct.calcsize(struct)
data = self.i2c.readfrom_mem(self.address, register, size)
values = ustruct.unpack(struct, data)
return values
data = ustruct.pack(struct, *values)
self.i2c.writeto_mem(self.address, register, data)
def _register(self, register, value=None, struct='B'):
if value is None:
return self._registers(register, struct=struct)[0]
self._registers(register, (value,), struct=struct)
def _flag(self, register=0x00, bit=0, value=None):
data = self._register(register)
mask = 1 << bit
if value is None:
return bool(data & mask)
elif value:
data |= mask
else:
data &= ~mask
self._register(register, data)
def _config(self, *config):
for register, value in config:
self._register(register, value)
def init(self, power2v8=True):
self._flag(_EXTSUP_HV, 0, power2v8)
# I2C standard mode
self._config(
(0x88, 0x00),
(0x80, 0x01),
(0xff, 0x01),
(0x00, 0x00),
)
self._stop_variable = self._register(0x91)
self._config(
(0x00, 0x01),
(0xff, 0x00),
(0x80, 0x00),
)
# disable signal_rate_msrc and signal_rate_pre_range limit checks
self._flag(_MSRC_CONFIG, 1, True)
self._flag(_MSRC_CONFIG, 4, True)
# rate_limit = 0.25
self._register(_FINAL_RATE_RTN_LIMIT, int(0.1 * (1 << 7)),
struct='>H')
self._register(_SYSTEM_SEQUENCE, 0xff)
spad_count, is_aperture = self._spad_info()
spad_map = bytearray(self._registers(_SPAD_ENABLES, struct='6B'))
# set reference spads
self._config(
(0xff, 0x01),
(_SPAD_REF_START, 0x00),
(_SPAD_NUM_REQUESTED, 0x2c),
(0xff, 0x00),
(_REF_EN_START_SELECT, 0xb4),
)
spads_enabled = 0
for i in range(48):
if i < 12 and is_aperture or spads_enabled >= spad_count:
spad_map[i // 8] &= ~(1 << (i >> 2))
elif spad_map[i // 8] & (1 << (i >> 2)):
spads_enabled += 1
self._registers(_SPAD_ENABLES, spad_map, struct='6B')
self._config(
(0xff, 0x01),
(0x00, 0x00),
(0xff, 0x00),
(0x09, 0x00),
(0x10, 0x00),
(0x11, 0x00),
(0x24, 0x01),
(0x25, 0xFF),
(0x75, 0x00),
(0xFF, 0x01),
(0x4E, 0x2C),
(0x48, 0x00),
(0x30, 0x20),
(0xFF, 0x00),
(0x30, 0x09),
(0x54, 0x00),
(0x31, 0x04),
(0x32, 0x03),
(0x40, 0x83),
(0x46, 0x25),
(0x60, 0x00),
(0x27, 0x00),
(0x50, 0x06),
(0x51, 0x00),
(0x52, 0x96),
(0x56, 0x08),
(0x57, 0x30),
(0x61, 0x00),
(0x62, 0x00),
(0x64, 0x00),
(0x65, 0x00),
(0x66, 0xA0),
(0xFF, 0x01),
(0x22, 0x32),
(0x47, 0x14),
(0x49, 0xFF),
(0x4A, 0x00),
(0xFF, 0x00),
(0x7A, 0x0A),
(0x7B, 0x00),
(0x78, 0x21),
(0xFF, 0x01),
(0x23, 0x34),
(0x42, 0x00),
(0x44, 0xFF),
(0x45, 0x26),
(0x46, 0x05),
(0x40, 0x40),
(0x0E, 0x06),
(0x20, 0x1A),
(0x43, 0x40),
(0xFF, 0x00),
(0x34, 0x03),
(0x35, 0x44),
(0xFF, 0x01),
(0x31, 0x04),
(0x4B, 0x09),
(0x4C, 0x05),
(0x4D, 0x04),
(0xFF, 0x00),
(0x44, 0x00),
(0x45, 0x20),
(0x47, 0x08),
(0x48, 0x28),
(0x67, 0x00),
(0x70, 0x04),
(0x71, 0x01),
(0x72, 0xFE),
(0x76, 0x00),
(0x77, 0x00),
(0xFF, 0x01),
(0x0D, 0x01),
(0xFF, 0x00),
(0x80, 0x01),
(0x01, 0xF8),
(0xFF, 0x01),
(0x8E, 0x01),
(0x00, 0x01),
(0xFF, 0x00),
(0x80, 0x00),
)
self._register(_INTERRUPT_GPIO, 0x04)
self._flag(_GPIO_MUX_ACTIVE_HIGH, 4, False)
self._register(_INTERRUPT_CLEAR, 0x01)
# XXX Need to implement this.
# budget = self._timing_budget()
# self._register(_SYSTEM_SEQUENCE, 0xe8)
# self._timing_budget(budget)
self._register(_SYSTEM_SEQUENCE, 0x01)
self._calibrate(0x40)
self._register(_SYSTEM_SEQUENCE, 0x02)
self._calibrate(0x00)
self._register(_SYSTEM_SEQUENCE, 0xe8)
def _spad_info(self):
self._config(
(0x80, 0x01),
(0xff, 0x01),
(0x00, 0x00),
(0xff, 0x06),
)
self._flag(0x83, 3, True)
self._config(
(0xff, 0x07),
(0x81, 0x01),
(0x80, 0x01),
(0x94, 0x6b),
(0x83, 0x00),
)
for timeout in range(_IO_TIMEOUT):
if self._register(0x83):
break
utime.sleep_ms(1)
else:
raise TimeoutError()
self._config(
(0x83, 0x01),
)
value = self._register(0x92)
self._config(
(0x81, 0x00),
(0xff, 0x06),
)
self._flag(0x83, 3, False)
self._config(
(0xff, 0x01),
(0x00, 0x01),
(0xff, 0x00),
(0x80, 0x00),
)
count = value & 0x7f
is_aperture = bool(value & 0b10000000)
return count, is_aperture
def _calibrate(self, vhv_init_byte):
self._register(_SYSRANGE_START, 0x01 | vhv_init_byte)
for timeout in range(_IO_TIMEOUT):
if self._register(_RESULT_INTERRUPT_STATUS) & 0x07:
break
utime.sleep_ms(1)
else:
raise TimeoutError()
self._register(_INTERRUPT_CLEAR, 0x01)
self._register(_SYSRANGE_START, 0x00)
def start(self, period=0):
self._config(
(0x80, 0x01),
(0xFF, 0x01),
(0x00, 0x00),
(0x91, self._stop_variable),
(0x00, 0x01),
(0xFF, 0x00),
(0x80, 0x00),
)
if period:
oscilator = self._register(_OSC_CALIBRATE, struct='>H')
if oscilator:
period *= oscilator
self._register(_MEASURE_PERIOD, period, struct='>H')
self._register(_SYSRANGE_START, 0x04)
else:
self._register(_SYSRANGE_START, 0x02)
self._started = True
def stop(self):
self._register(_SYSRANGE_START, 0x01)
self._config(
(0xFF, 0x01),
(0x00, 0x00),
(0x91, self._stop_variable),
(0x00, 0x01),
(0xFF, 0x00),
)
self._started = False
def read(self):
if not self._started:
self._config(
(0x80, 0x01),
(0xFF, 0x01),
(0x00, 0x00),
(0x91, self._stop_variable),
(0x00, 0x01),
(0xFF, 0x00),
(0x80, 0x00),
(_SYSRANGE_START, 0x01),
)
for timeout in range(_IO_TIMEOUT):
if not self._register(_SYSRANGE_START) & 0x01:
break
utime.sleep_ms(1)
else:
raise TimeoutError()
for timeout in range(_IO_TIMEOUT):
if self._register(_RESULT_INTERRUPT_STATUS) & 0x07:
break
utime.sleep_ms(1)
else:
raise TimeoutError()
value = self._register(_RESULT_RANGE_STATUS + 10, struct='>H')
self._register(_INTERRUPT_CLEAR, 0x01)
return value
def set_signal_rate_limit(self, limit_Mcps):
if limit_Mcps < 0 or limit_Mcps > 511.99:
return False
self._register(0x44, limit_Mcps * (1 << 7))
return True
def decode_Vcsel_period(self, reg_val):
return (((reg_val) + 1) << 1)
def encode_Vcsel_period(self, period_pclks):
return (((period_pclks) >> 1) - 1)
def set_Vcsel_pulse_period(self, type, period_pclks):
vcsel_period_reg = self.encode_Vcsel_period(period_pclks)
self.get_sequence_step_enables()
self.get_sequence_step_timeouts()
if type == self.vcsel_period_type[0]:
if period_pclks == 12:
self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18)
elif period_pclks == 14:
self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30)
elif period_pclks == 16:
self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40)
elif period_pclks == 18:
self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50)
else:
return False
self._register(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
self._register(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg)
new_pre_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["pre_range_us"],
period_pclks)
self._register(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_pre_range_timeout_mclks))
new_msrc_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["msrc_dss_tcc_us"],
period_pclks)
self._register(MSRC_CONFIG_TIMEOUT_MACROP,
255 if new_msrc_timeout_mclks > 256 else (new_msrc_timeout_mclks - 1))
elif type == self.vcsel_period_type[1]:
if period_pclks == 8:
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10)
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02)
self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C)
self._register(0xFF, 0x01)
self._register(ALGO_PHASECAL_LIM, 0x30)
self._register(0xFF, 0x00)
elif period_pclks == 10:
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28)
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09)
self._register(0xFF, 0x01)
self._register(ALGO_PHASECAL_LIM, 0x20)
self._register(0xFF, 0x00)
elif period_pclks == 12:
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38)
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08)
self._register(0xFF, 0x01)
self._register(ALGO_PHASECAL_LIM, 0x20)
self._register(0xFF, 0x00)
elif period_pclks == 14:
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48)
self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07)
self._register(0xFF, 0x01)
self._register(ALGO_PHASECAL_LIM, 0x20)
self._register(0xFF, 0x00)
else:
return False
self._register(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg)
new_final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["final_range_us"],
period_pclks)
if self.enables["pre_range"]:
new_final_range_timeout_mclks += 1
self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_final_range_timeout_mclks))
else:
return False
self.set_measurement_timing_budget(self.measurement_timing_budget_us)
sequence_config = self._register(SYSTEM_SEQUENCE_CONFIG)
self._register(SYSTEM_SEQUENCE_CONFIG, 0x02)
self.perform_single_ref_calibration(0x0)
self._register(SYSTEM_SEQUENCE_CONFIG, sequence_config)
return True
def get_sequence_step_enables(self):
sequence_config = self._register(0x01)
self.enables["tcc"] = (sequence_config >> 4) & 0x1
self.enables["dss"] = (sequence_config >> 3) & 0x1
self.enables["msrc"] = (sequence_config >> 2) & 0x1
self.enables["pre_range"] = (sequence_config >> 6) & 0x1
self.enables["final_range"] = (sequence_config >> 7) & 0x1
def get_vcsel_pulse_period(self, type):
if type == self.vcsel_period_type[0]:
return self.decode_Vcsel_period(0x50)
elif type == self.vcsel_period_type[1]:
return self.decode_Vcsel_period(0x70)
else:
return 255
def get_sequence_step_timeouts(self):
self.timeouts["pre_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[0])
self.timeouts["msrc_dss_tcc_mclks"] = int(self._register(MSRC_CONFIG_TIMEOUT_MACROP)) + 1
self.timeouts["msrc_dss_tcc_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["msrc_dss_tcc_mclks"],
self.timeouts[
"pre_range_vcsel_period_pclks"])
self.timeouts["pre_range_mclks"] = self.decode_timeout(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)
self.timeouts["pre_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["pre_range_mclks"],
self.timeouts[
"pre_range_vcsel_period_pclks"])
self.timeouts["final_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[1])
self.timeouts["final_range_mclks"] = self.decode_timeout(self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI))
if self.enables["pre_range"]:
self.timeouts["final_range_mclks"] -= self.timeouts["pre_range_mclks"]
self.timeouts["final_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["final_range_mclks"],
self.timeouts[
"final_range_vcsel_period_pclks"])
def timeout_Mclks_to_microseconds(self, timeout_period_mclks, vcsel_period_pclks):
macro_period_ns = self.calc_macro_period(vcsel_period_pclks)
return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000
def timeout_microseconds_to_Mclks(self, timeout_period_us, vcsel_period_pclks):
macro_period_ns = self.calc_macro_period(vcsel_period_pclks)
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns)
def calc_macro_period(self, vcsel_period_pclks):
return (((2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
def decode_timeout(self, reg_val):
return ((reg_val & 0x00FF) << ((reg_val & 0xFF00) >> 8)) + 1
def encode_timeout(self, timeout_mclks):
timeout_mclks = int(timeout_mclks)
ls_byte = 0
ms_byte = 0
if timeout_mclks > 0:
ls_byte = timeout_mclks - 1
while (ls_byte & 0xFFFFFF00) > 0:
ls_byte >>= 1
ms_byte += 1
return (ms_byte << 8) or (ls_byte & 0xFF)
else:
return 0
def set_measurement_timing_budget(self, budget_us):
start_overhead = 1320
end_overhead = 960
msrc_overhead = 660
tcc_overhead = 590
dss_overhead = 690
pre_range_overhead = 660
final_range_overhead = 550
min_timing_budget = 20000
if budget_us < min_timing_budget:
return False
used_budget_us = start_overhead + end_overhead
self.get_sequence_step_enables()
self.get_sequence_step_timeouts()
if self.enables["tcc"]:
used_budget_us += self.timeouts["msrc_dss_tcc_us"] + tcc_overhead
if self.enables["dss"]:
used_budget_us += 2 * self.timeouts["msrc_dss_tcc_us"] + dss_overhead
if self.enables["msrc"]:
used_budget_us += self.timeouts["msrc_dss_tcc_us"] + msrc_overhead
if self.enables["pre_range"]:
used_budget_us += self.timeouts["pre_range_us"] + pre_range_overhead
if self.enables["final_range"]:
used_budget_us += final_range_overhead
if used_budget_us > budget_us:
return False
final_range_timeout_us = budget_us - used_budget_us
final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(final_range_timeout_us, self.timeouts[
"final_range_vcsel_period_pclks"])
if self.enables["pre_range"]:
final_range_timeout_mclks += self.timeouts["pre_range_mclks"]
self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(final_range_timeout_mclks))
self.measurement_timing_budget_us = budget_us
return True
def perform_single_ref_calibration(self, vhv_init_byte):
# Pico MicroPython doesn't have a Chrono class, so the line below is commented out
# chrono = Timer.Chrono()
self._register(SYSRANGE_START, 0x01 | vhv_init_byte)
# Instead of using the chrono class, I'll just capture the current time
chrono_start = utime.ticks_ms()
while self._register((RESULT_INTERRUPT_STATUS & 0x07) == 0):
# elapsed time is juse the current time minus the start time.
time_elapsed = utime.ticks_ms() - chrono_start
if time_elapsed > _IO_TIMEOUT:
return False
self._register(SYSTEM_INTERRUPT_CLEAR, 0x01)
self._register(SYSRANGE_START, 0x00)
return True
# From Christian Lehnert
# main Code
# I2C setup
sda = Pin(0) # GPIO 0 -> pin 1
scl = Pin(1) # GPIO 1 -> pin 2
id = 0 # i2c bus lane
i2c = I2C(id=id, sda=sda, scl=scl)
# VL53LOX Object
# address is the decimal bus in hex syntax
# use i2c.scan to get the device number in decimal
tof = VL53L0X(i2c)
# the measuting_timing_budget is a value in ms, the longer the budget, the more accurate the reading.
budget = tof.measurement_timing_budget_us
print("Budget was:", budget)
# change this value for mor accuracy
tof.set_measurement_timing_budget(40000)
# Sets the VCSEL (vertical cavity surface emitting laser) pulse period for the
# given period type (VL53L0X::VcselPeriodPreRange or VL53L0X::VcselPeriodFinalRange)
# to the given value (in PCLKs). Longer periods increase the potential range of the sensor.
# Valid values are (even numbers only):
# Warning: Check the range if to short use a bigger number
tof.set_Vcsel_pulse_period(tof.vcsel_period_type[0], 18) # 2m
# tof.set_Vcsel_pulse_period(tof.vcsel_period_type[0], 12) 30 cm
tof.set_Vcsel_pulse_period(tof.vcsel_period_type[1], 14) # 2m
# tof.set_Vcsel_pulse_period(tof.vcsel_period_type[1], 8) # 30 cm
while True:
# Start ranging
# WARNING: The Tof could be 50mm of check if the 50mm is needed, if not remove it
distance_in_mm = tof.ping() - 50 # distance is in mm
# max value of connected tof
max_tof_measure = 2000
print('distance_in_mm %s' % 'mm')
# at 20 to 30 mm it not correct anymore
# check for the maximum distance of the connected tof
if distance_in_mm > max_tof_measure:
print("Distance to Big")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment