Skip to content

Instantly share code, notes, and snippets.

@choupi
Last active December 23, 2015 12:18
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save choupi/6633938 to your computer and use it in GitHub Desktop.
Save choupi/6633938 to your computer and use it in GitHub Desktop.
init/main.c: process 0 -> process 1
int fork(void)
{
long __res;
__asm__ volatile ("int $0x80"
: "=a" (__res)
: "0" (__NR_ fork)) ;
if (__res >= 0)
return (int) __res;
errno = -__res;
return -1;
}
#define move_to_user_mode() \
__asm__ ("movl %%esp,%%eax\n\t" \
"pushl $0x17\n\t" \
"pushl %%eax\n\t" \
"pushfl\n\t" \
"pushl $0x0f\n\t" \
"pushl $1f\n\t" \
"iret\n" \
"1:\tmovl $0x17,%%eax\n\t" \
"movw %%ax,%%ds\n\t" \
"movw %%ax,%%es\n\t" \
"movw %%ax,%%fs\n\t" \
"movw %%ax,%%gs" \
:::"ax")
#define sti() __asm__ ("sti"::)
#define cli() __asm__ ("cli"::)
#define nop() __asm__ ("nop"::)
#define iret() __asm__ ("iret"::)
#define _set_gate(gate_addr,type,dpl,addr) \
__asm__ ("movw %%dx,%%ax\n\t" \
"movw %0,%%dx\n\t" \
"movl %%eax,%1\n\t" \
"movl %%edx,%2" \
: \
: "i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
"o" (*((char *) (gate_addr))), \
"o" (*(4+(char *) (gate_addr))), \
"d" ((char *) (addr)),"a" (0x00080000))
#define set_intr_gate(n,addr) \
_set_gate(&idt[n],14,0,addr)
#define set_trap_gate(n,addr) \
_set_gate(&idt[n],15,0,addr)
#define set_system_gate(n,addr) \
_set_gate(&idt[n],15,3,addr)
#define _set_seg_desc(gate_addr,type,dpl,base,limit) {\
*(gate_addr) = ((base) & 0xff000000) | \
(((base) & 0x00ff0000)>>16) | \
((limit) & 0xf0000) | \
((dpl)<<13) | \
(0x00408000) | \
((type)<<8); \
*((gate_addr)+1) = (((base) & 0x0000ffff)<<16) | \
((limit) & 0x0ffff); }
#define _set_tssldt_desc(n,addr,type) \
__asm__ ("movw $104,%1\n\t" \
"movw %%ax,%2\n\t" \
"rorl $16,%%eax\n\t" \
"movb %%al,%3\n\t" \
"movb $" type ",%4\n\t" \
"movb $0x00,%5\n\t" \
"movb %%ah,%6\n\t" \
"rorl $16,%%eax" \
::"a" (addr), "m" (*(n)), "m" (*(n+2)), "m" (*(n+4)), \
"m" (*(n+5)), "m" (*(n+6)), "m" (*(n+7)) \
)
#define set_tss_desc(n,addr) _set_tssldt_desc(((char *) (n)),addr,"0x89")
#define set_ldt_desc(n,addr) _set_tssldt_desc(((char *) (n)),addr,"0x82")
#ifndef _UNISTD_H
#define _UNISTD_H
/* ok, this may be a joke, but I'm working on it */
#define _POSIX_VERSION 198808L
#define _POSIX_CHOWN_RESTRICTED /* only root can do a chown (I think..) */
#define _POSIX_NO_TRUNC /* no pathname truncation (but see in kernel) */
#define _POSIX_VDISABLE '\0' /* character to disable things like ^C */
/*#define _POSIX_SAVED_IDS */ /* we'll get to this yet */
/*#define _POSIX_JOB_CONTROL */ /* we aren't there quite yet. Soon hopefully */
#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
#ifndef NULL
#define NULL ((void *)0)
#endif
/* access */
#define F_OK 0
#define X_OK 1
#define W_OK 2
#define R_OK 4
/* lseek */
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2
/* _SC stands for System Configuration. We don't use them much */
#define _SC_ARG_MAX 1
#define _SC_CHILD_MAX 2
#define _SC_CLOCKS_PER_SEC 3
#define _SC_NGROUPS_MAX 4
#define _SC_OPEN_MAX 5
#define _SC_JOB_CONTROL 6
#define _SC_SAVED_IDS 7
#define _SC_VERSION 8
/* more (possibly) configurable things - now pathnames */
#define _PC_LINK_MAX 1
#define _PC_MAX_CANON 2
#define _PC_MAX_INPUT 3
#define _PC_NAME_MAX 4
#define _PC_PATH_MAX 5
#define _PC_PIPE_BUF 6
#define _PC_NO_TRUNC 7
#define _PC_VDISABLE 8
#define _PC_CHOWN_RESTRICTED 9
#include <sys/stat.h>
#include <sys/times.h>
#include <sys/utsname.h>
#include <utime.h>
#ifdef __LIBRARY__
#define __NR_setup 0 /* used only by init, to get system going */
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
#define __NR_time 13
#define __NR_mknod 14
#define __NR_chmod 15
#define __NR_chown 16
#define __NR_break 17
#define __NR_stat 18
#define __NR_lseek 19
#define __NR_getpid 20
#define __NR_mount 21
#define __NR_umount 22
#define __NR_setuid 23
#define __NR_getuid 24
#define __NR_stime 25
#define __NR_ptrace 26
#define __NR_alarm 27
#define __NR_fstat 28
#define __NR_pause 29
#define __NR_utime 30
#define __NR_stty 31
#define __NR_gtty 32
#define __NR_access 33
#define __NR_nice 34
#define __NR_ftime 35
#define __NR_sync 36
#define __NR_kill 37
#define __NR_rename 38
#define __NR_mkdir 39
#define __NR_rmdir 40
#define __NR_dup 41
#define __NR_pipe 42
#define __NR_times 43
#define __NR_prof 44
#define __NR_brk 45
#define __NR_setgid 46
#define __NR_getgid 47
#define __NR_signal 48
#define __NR_geteuid 49
#define __NR_getegid 50
#define __NR_acct 51
#define __NR_phys 52
#define __NR_lock 53
#define __NR_ioctl 54
#define __NR_fcntl 55
#define __NR_mpx 56
#define __NR_setpgid 57
#define __NR_ulimit 58
#define __NR_uname 59
#define __NR_umask 60
#define __NR_chroot 61
#define __NR_ustat 62
#define __NR_dup2 63
#define __NR_getppid 64
#define __NR_getpgrp 65
#define __NR_setsid 66
#define __NR_sigaction 67
#define __NR_sgetmask 68
#define __NR_ssetmask 69
#define __NR_setreuid 70
#define __NR_setregid 71
#define _syscall0(type,name) \
type name(void) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name)); \
if (__res >= 0) \
return (type) __res; \
errno = -__res; \
return -1; \
}
#define _syscall1(type,name,atype,a) \
type name(atype a) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(a))); \
if (__res >= 0) \
return (type) __res; \
errno = -__res; \
return -1; \
}
#define _syscall2(type,name,atype,a,btype,b) \
type name(atype a,btype b) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(a)),"c" ((long)(b))); \
if (__res >= 0) \
return (type) __res; \
errno = -__res; \
return -1; \
}
#define _syscall3(type,name,atype,a,btype,b,ctype,c) \
type name(atype a,btype b,ctype c) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(a)),"c" ((long)(b)),"d" ((long)(c))); \
if (__res>=0) \
return (type) __res; \
errno=-__res; \
return -1; \
}
#endif /* __LIBRARY__ */
extern int errno;
int access(const char * filename, mode_t mode);
int acct(const char * filename);
int alarm(int sec);
int brk(void * end_data_segment);
void * sbrk(ptrdiff_t increment);
int chdir(const char * filename);
int chmod(const char * filename, mode_t mode);
int chown(const char * filename, uid_t owner, gid_t group);
int chroot(const char * filename);
int close(int fildes);
int creat(const char * filename, mode_t mode);
int dup(int fildes);
int execve(const char * filename, char ** argv, char ** envp);
int execv(const char * pathname, char ** argv);
int execvp(const char * file, char ** argv);
int execl(const char * pathname, char * arg0, ...);
int execlp(const char * file, char * arg0, ...);
int execle(const char * pathname, char * arg0, ...);
volatile void exit(int status);
volatile void _exit(int status);
int fcntl(int fildes, int cmd, ...);
int fork(void);
int getpid(void);
int getuid(void);
int geteuid(void);
int getgid(void);
int getegid(void);
int ioctl(int fildes, int cmd, ...);
int kill(pid_t pid, int signal);
int link(const char * filename1, const char * filename2);
int lseek(int fildes, off_t offset, int origin);
int mknod(const char * filename, mode_t mode, dev_t dev);
int mount(const char * specialfile, const char * dir, int rwflag);
int nice(int val);
int open(const char * filename, int flag, ...);
int pause(void);
int pipe(int * fildes);
int read(int fildes, char * buf, off_t count);
int setpgrp(void);
int setpgid(pid_t pid,pid_t pgid);
int setuid(uid_t uid);
int setgid(gid_t gid);
void (*signal(int sig, void (*fn)(int)))(int);
int stat(const char * filename, struct stat * stat_buf);
int fstat(int fildes, struct stat * stat_buf);
int stime(time_t * tptr);
int sync(void);
time_t time(time_t * tloc);
time_t times(struct tms * tbuf);
int ulimit(int cmd, long limit);
mode_t umask(mode_t mask);
int umount(const char * specialfile);
int uname(struct utsname * name);
int unlink(const char * filename);
int ustat(dev_t dev, struct ustat * ubuf);
int utime(const char * filename, struct utimbuf * times);
pid_t waitpid(pid_t pid,int * wait_stat,int options);
pid_t wait(int * wait_stat);
int write(int fildes, const char * buf, off_t count);
int dup2(int oldfd, int newfd);
int getppid(void);
pid_t getpgrp(void);
pid_t setsid(void);
#endif
/*
* linux/init/main.c
*
* (C) 1991 Linus Torvalds
*/
#define __LIBRARY__
#include <unistd.h>
#include <time.h>
/*
* we need this inline - forking from kernel space will result
* in NO COPY ON WRITE (!!!), until an execve is executed. This
* is no problem, but for the stack. This is handled by not letting
* main() use the stack at all after fork(). Thus, no function
* calls - which means inline code for fork too, as otherwise we
* would use the stack upon exit from 'fork()'.
*
* Actually only pause and fork are needed inline, so that there
* won't be any messing with the stack from main(), but we define
* some others too.
*/
static inline _syscall0(int,fork)
static inline _syscall0(int,pause)
static inline _syscall1(int,setup,void *,BIOS)
static inline _syscall0(int,sync)
#include <linux/tty.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <asm/system.h>
#include <asm/io.h>
#include <stddef.h>
#include <stdarg.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <linux/fs.h>
static char printbuf[1024];
extern int vsprintf();
extern void init(void);
extern void blk_dev_init(void);
extern void chr_dev_init(void);
extern void hd_init(void);
extern void floppy_init(void);
extern void mem_init(long start, long end);
extern long rd_init(long mem_start, int length);
extern long kernel_mktime(struct tm * tm);
extern long startup_time;
/*
* This is set up by the setup-routine at boot-time
*/
#define EXT_MEM_K (*(unsigned short *)0x90002)
#define DRIVE_INFO (*(struct drive_info *)0x90080)
#define ORIG_ROOT_DEV (*(unsigned short *)0x901FC)
/*
* Yeah, yeah, it's ugly, but I cannot find how to do this correctly
* and this seems to work. I anybody has more info on the real-time
* clock I'd be interested. Most of this was trial and error, and some
* bios-listing reading. Urghh.
*/
#define CMOS_READ(addr) ({ \
outb_p(0x80|addr,0x70); \
inb_p(0x71); \
})
#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
static void time_init(void)
{
struct tm time;
do {
time.tm_sec = CMOS_READ(0);
time.tm_min = CMOS_READ(2);
time.tm_hour = CMOS_READ(4);
time.tm_mday = CMOS_READ(7);
time.tm_mon = CMOS_READ(8);
time.tm_year = CMOS_READ(9);
} while (time.tm_sec != CMOS_READ(0));
BCD_TO_BIN(time.tm_sec);
BCD_TO_BIN(time.tm_min);
BCD_TO_BIN(time.tm_hour);
BCD_TO_BIN(time.tm_mday);
BCD_TO_BIN(time.tm_mon);
BCD_TO_BIN(time.tm_year);
time.tm_mon--;
startup_time = kernel_mktime(&time);
}
static long memory_end = 0;
static long buffer_memory_end = 0;
static long main_memory_start = 0;
struct drive_info { char dummy[32]; } drive_info;
void main(void) /* This really IS void, no error here. */
{ /* The startup routine assumes (well, ...) this */
/*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
ROOT_DEV = ORIG_ROOT_DEV;
drive_info = DRIVE_INFO;
memory_end = (1<<20) + (EXT_MEM_K<<10);
memory_end &= 0xfffff000;
if (memory_end > 16*1024*1024)
memory_end = 16*1024*1024;
if (memory_end > 12*1024*1024)
buffer_memory_end = 4*1024*1024;
else if (memory_end > 6*1024*1024)
buffer_memory_end = 2*1024*1024;
else
buffer_memory_end = 1*1024*1024;
main_memory_start = buffer_memory_end;
#ifdef RAMDISK
main_memory_start += rd_init(main_memory_start, RAMDISK*1024);
#endif
mem_init(main_memory_start,memory_end);
trap_init();
blk_dev_init();
chr_dev_init();
tty_init();
time_init();
sched_init();
buffer_init(buffer_memory_end);
hd_init();
floppy_init();
sti();
move_to_user_mode();
if (!fork()) { /* we count on this going ok */
init();
}
/*
* NOTE!! For any other task 'pause()' would mean we have to get a
* signal to awaken, but task0 is the sole exception (see 'schedule()')
* as task 0 gets activated at every idle moment (when no other tasks
* can run). For task0 'pause()' just means we go check if some other
* task can run, and if not we return here.
*/
for(;;) pause();
}
static int printf(const char *fmt, ...)
{
va_list args;
int i;
va_start(args, fmt);
write(1,printbuf,i=vsprintf(printbuf, fmt, args));
va_end(args);
return i;
}
static char * argv_rc[] = { "/bin/sh", NULL };
static char * envp_rc[] = { "HOME=/", NULL };
static char * argv[] = { "-/bin/sh",NULL };
static char * envp[] = { "HOME=/usr/root", NULL };
void init(void)
{
int pid,i;
setup((void *) &drive_info);
(void) open("/dev/tty0",O_RDWR,0);
(void) dup(0);
(void) dup(0);
printf("%d buffers = %d bytes buffer space\n\r",NR_BUFFERS,
NR_BUFFERS*BLOCK_SIZE);
printf("Free mem: %d bytes\n\r",memory_end-main_memory_start);
if (!(pid=fork())) {
close(0);
if (open("/etc/rc",O_RDONLY,0))
_exit(1);
execve("/bin/sh",argv_rc,envp_rc);
_exit(2);
}
if (pid>0)
while (pid != wait(&i))
/* nothing */;
while (1) {
if ((pid=fork())<0) {
printf("Fork failed in init\r\n");
continue;
}
if (!pid) {
close(0);close(1);close(2);
setsid();
(void) open("/dev/tty0",O_RDWR,0);
(void) dup(0);
(void) dup(0);
_exit(execve("/bin/sh",argv,envp));
}
while (1)
if (pid == wait(&i))
break;
printf("\n\rchild %d died with code %04x\n\r",pid,i);
sync();
}
_exit(0); /* NOTE! _exit, not exit() */
}
/*
* linux/kernel/fork.c
*
* (C) 1991 Linus Torvalds
*/
/*
* 'fork.c' contains the help-routines for the 'fork' system call
* (see also system_call.s), and some misc functions ('verify_area').
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/mm.c': 'copy_page_tables()'
*/
#include <errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <asm/segment.h>
#include <asm/system.h>
extern void write_verify(unsigned long address);
long last_pid=0;
void verify_area(void * addr,int size)
{
unsigned long start;
start = (unsigned long) addr;
size += start & 0xfff;
start &= 0xfffff000;
start += get_base(current->ldt[2]);
while (size>0) {
size -= 4096;
write_verify(start);
start += 4096;
}
}
int copy_mem(int nr,struct task_struct * p)
{
unsigned long old_data_base,new_data_base,data_limit;
unsigned long old_code_base,new_code_base,code_limit;
code_limit=get_limit(0x0f);
data_limit=get_limit(0x17);
old_code_base = get_base(current->ldt[1]);
old_data_base = get_base(current->ldt[2]);
if (old_data_base != old_code_base)
panic("We don't support separate I&D");
if (data_limit < code_limit)
panic("Bad data_limit");
new_data_base = new_code_base = nr * 0x4000000;
p->start_code = new_code_base;
set_base(p->ldt[1],new_code_base);
set_base(p->ldt[2],new_data_base);
if (copy_page_tables(old_data_base,new_data_base,data_limit)) {
free_page_tables(new_data_base,data_limit);
return -ENOMEM;
}
return 0;
}
/*
* Ok, this is the main fork-routine. It copies the system process
* information (task[nr]) and sets up the necessary registers. It
* also copies the data segment in it's entirety.
*/
int copy_process(int nr,long ebp,long edi,long esi,long gs,long none,
long ebx,long ecx,long edx,
long fs,long es,long ds,
long eip,long cs,long eflags,long esp,long ss)
{
struct task_struct *p;
int i;
struct file *f;
p = (struct task_struct *) get_free_page();
if (!p)
return -EAGAIN;
task[nr] = p;
*p = *current; /* NOTE! this doesn't copy the supervisor stack */
p->state = TASK_UNINTERRUPTIBLE;
p->pid = last_pid;
p->father = current->pid;
p->counter = p->priority;
p->signal = 0;
p->alarm = 0;
p->leader = 0; /* process leadership doesn't inherit */
p->utime = p->stime = 0;
p->cutime = p->cstime = 0;
p->start_time = jiffies;
p->tss.back_link = 0;
p->tss.esp0 = PAGE_SIZE + (long) p;
p->tss.ss0 = 0x10;
p->tss.eip = eip;
p->tss.eflags = eflags;
p->tss.eax = 0;
p->tss.ecx = ecx;
p->tss.edx = edx;
p->tss.ebx = ebx;
p->tss.esp = esp;
p->tss.ebp = ebp;
p->tss.esi = esi;
p->tss.edi = edi;
p->tss.es = es & 0xffff;
p->tss.cs = cs & 0xffff;
p->tss.ss = ss & 0xffff;
p->tss.ds = ds & 0xffff;
p->tss.fs = fs & 0xffff;
p->tss.gs = gs & 0xffff;
p->tss.ldt = _LDT(nr);
p->tss.trace_bitmap = 0x80000000;
if (last_task_used_math == current)
__asm__("clts ; fnsave %0"::"m" (p->tss.i387));
if (copy_mem(nr,p)) {
task[nr] = NULL;
free_page((long) p);
return -EAGAIN;
}
for (i=0; i<NR_OPEN;i++)
if (f=p->filp[i])
f->f_count++;
if (current->pwd)
current->pwd->i_count++;
if (current->root)
current->root->i_count++;
if (current->executable)
current->executable->i_count++;
set_tss_desc(gdt+(nr<<1)+FIRST_TSS_ENTRY,&(p->tss));
set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,&(p->ldt));
p->state = TASK_RUNNING; /* do this last, just in case */
return last_pid;
}
int find_empty_process(void)
{
int i;
repeat:
if ((++last_pid)<0) last_pid=1;
for(i=0 ; i<NR_TASKS ; i++)
if (task[i] && task[i]->pid == last_pid) goto repeat;
for(i=1 ; i<NR_TASKS ; i++)
if (!task[i])
return i;
return -EAGAIN;
}
/*
* linux/kernel/sched.c
*
* (C) 1991 Linus Torvalds
*/
/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid(), which just extracts a field from
* current-task
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/sys.h>
#include <linux/fdreg.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#include <signal.h>
#define _S(nr) (1<<((nr)-1))
#define _BLOCKABLE (~(_S(SIGKILL) | _S(SIGSTOP)))
void show_task(int nr,struct task_struct * p)
{
int i,j = 4096-sizeof(struct task_struct);
printk("%d: pid=%d, state=%d, ",nr,p->pid,p->state);
i=0;
while (i<j && !((char *)(p+1))[i])
i++;
printk("%d (of %d) chars free in kernel stack\n\r",i,j);
}
void show_stat(void)
{
int i;
for (i=0;i<NR_TASKS;i++)
if (task[i])
show_task(i,task[i]);
}
#define LATCH (1193180/HZ)
extern void mem_use(void);
extern int timer_interrupt(void);
extern int system_call(void);
union task_union {
struct task_struct task;
char stack[PAGE_SIZE];
};
static union task_union init_task = {INIT_TASK,};
long volatile jiffies=0;
long startup_time=0;
struct task_struct *current = &(init_task.task);
struct task_struct *last_task_used_math = NULL;
struct task_struct * task[NR_TASKS] = {&(init_task.task), };
long user_stack [ PAGE_SIZE>>2 ] ;
struct {
long * a;
short b;
} stack_start = { & user_stack [PAGE_SIZE>>2] , 0x10 };
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*/
void math_state_restore()
{
if (last_task_used_math == current)
return;
__asm__("fwait");
if (last_task_used_math) {
__asm__("fnsave %0"::"m" (last_task_used_math->tss.i387));
}
last_task_used_math=current;
if (current->used_math) {
__asm__("frstor %0"::"m" (current->tss.i387));
} else {
__asm__("fninit"::);
current->used_math=1;
}
}
/*
* 'schedule()' is the scheduler function. This is GOOD CODE! There
* probably won't be any reason to change this, as it should work well
* in all circumstances (ie gives IO-bound processes good response etc).
* The one thing you might take a look at is the signal-handler code here.
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*/
void schedule(void)
{
int i,next,c;
struct task_struct ** p;
/* check alarm, wake up any interruptible tasks that have got a signal */
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
if (*p) {
if ((*p)->alarm && (*p)->alarm < jiffies) {
(*p)->signal |= (1<<(SIGALRM-1));
(*p)->alarm = 0;
}
if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&
(*p)->state==TASK_INTERRUPTIBLE)
(*p)->state=TASK_RUNNING;
}
/* this is the scheduler proper: */
while (1) {
c = -1;
next = 0;
i = NR_TASKS;
p = &task[NR_TASKS];
while (--i) {
if (!*--p)
continue;
if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
c = (*p)->counter, next = i;
}
if (c) break;
for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
if (*p)
(*p)->counter = ((*p)->counter >> 1) +
(*p)->priority;
}
switch_to(next);
}
int sys_pause(void)
{
current->state = TASK_INTERRUPTIBLE;
schedule();
return 0;
}
void sleep_on(struct task_struct **p)
{
struct task_struct *tmp;
if (!p)
return;
if (current == &(init_task.task))
panic("task[0] trying to sleep");
tmp = *p;
*p = current;
current->state = TASK_UNINTERRUPTIBLE;
schedule();
if (tmp)
tmp->state=0;
}
void interruptible_sleep_on(struct task_struct **p)
{
struct task_struct *tmp;
if (!p)
return;
if (current == &(init_task.task))
panic("task[0] trying to sleep");
tmp=*p;
*p=current;
repeat: current->state = TASK_INTERRUPTIBLE;
schedule();
if (*p && *p != current) {
(**p).state=0;
goto repeat;
}
*p=NULL;
if (tmp)
tmp->state=0;
}
void wake_up(struct task_struct **p)
{
if (p && *p) {
(**p).state=0;
*p=NULL;
}
}
/*
* OK, here are some floppy things that shouldn't be in the kernel
* proper. They are here because the floppy needs a timer, and this
* was the easiest way of doing it.
*/
static struct task_struct * wait_motor[4] = {NULL,NULL,NULL,NULL};
static int mon_timer[4]={0,0,0,0};
static int moff_timer[4]={0,0,0,0};
unsigned char current_DOR = 0x0C;
int ticks_to_floppy_on(unsigned int nr)
{
extern unsigned char selected;
unsigned char mask = 0x10 << nr;
if (nr>3)
panic("floppy_on: nr>3");
moff_timer[nr]=10000; /* 100 s = very big :-) */
cli(); /* use floppy_off to turn it off */
mask |= current_DOR;
if (!selected) {
mask &= 0xFC;
mask |= nr;
}
if (mask != current_DOR) {
outb(mask,FD_DOR);
if ((mask ^ current_DOR) & 0xf0)
mon_timer[nr] = HZ/2;
else if (mon_timer[nr] < 2)
mon_timer[nr] = 2;
current_DOR = mask;
}
sti();
return mon_timer[nr];
}
void floppy_on(unsigned int nr)
{
cli();
while (ticks_to_floppy_on(nr))
sleep_on(nr+wait_motor);
sti();
}
void floppy_off(unsigned int nr)
{
moff_timer[nr]=3*HZ;
}
void do_floppy_timer(void)
{
int i;
unsigned char mask = 0x10;
for (i=0 ; i<4 ; i++,mask <<= 1) {
if (!(mask & current_DOR))
continue;
if (mon_timer[i]) {
if (!--mon_timer[i])
wake_up(i+wait_motor);
} else if (!moff_timer[i]) {
current_DOR &= ~mask;
outb(current_DOR,FD_DOR);
} else
moff_timer[i]--;
}
}
#define TIME_REQUESTS 64
static struct timer_list {
long jiffies;
void (*fn)();
struct timer_list * next;
} timer_list[TIME_REQUESTS], * next_timer = NULL;
void add_timer(long jiffies, void (*fn)(void))
{
struct timer_list * p;
if (!fn)
return;
cli();
if (jiffies <= 0)
(fn)();
else {
for (p = timer_list ; p < timer_list + TIME_REQUESTS ; p++)
if (!p->fn)
break;
if (p >= timer_list + TIME_REQUESTS)
panic("No more time requests free");
p->fn = fn;
p->jiffies = jiffies;
p->next = next_timer;
next_timer = p;
while (p->next && p->next->jiffies < p->jiffies) {
p->jiffies -= p->next->jiffies;
fn = p->fn;
p->fn = p->next->fn;
p->next->fn = fn;
jiffies = p->jiffies;
p->jiffies = p->next->jiffies;
p->next->jiffies = jiffies;
p = p->next;
}
}
sti();
}
void do_timer(long cpl)
{
extern int beepcount;
extern void sysbeepstop(void);
if (beepcount)
if (!--beepcount)
sysbeepstop();
if (cpl)
current->utime++;
else
current->stime++;
if (next_timer) {
next_timer->jiffies--;
while (next_timer && next_timer->jiffies <= 0) {
void (*fn)(void);
fn = next_timer->fn;
next_timer->fn = NULL;
next_timer = next_timer->next;
(fn)();
}
}
if (current_DOR & 0xf0)
do_floppy_timer();
if ((--current->counter)>0) return;
current->counter=0;
if (!cpl) return;
schedule();
}
int sys_alarm(long seconds)
{
int old = current->alarm;
if (old)
old = (old - jiffies) / HZ;
current->alarm = (seconds>0)?(jiffies+HZ*seconds):0;
return (old);
}
int sys_getpid(void)
{
return current->pid;
}
int sys_getppid(void)
{
return current->father;
}
int sys_getuid(void)
{
return current->uid;
}
int sys_geteuid(void)
{
return current->euid;
}
int sys_getgid(void)
{
return current->gid;
}
int sys_getegid(void)
{
return current->egid;
}
int sys_nice(long increment)
{
if (current->priority-increment>0)
current->priority -= increment;
return 0;
}
void sched_init(void)
{
int i;
struct desc_struct * p;
if (sizeof(struct sigaction) != 16)
panic("Struct sigaction MUST be 16 bytes");
set_tss_desc(gdt+FIRST_TSS_ENTRY,&(init_task.task.tss));
set_ldt_desc(gdt+FIRST_LDT_ENTRY,&(init_task.task.ldt));
p = gdt+2+FIRST_TSS_ENTRY;
for(i=1;i<NR_TASKS;i++) {
task[i] = NULL;
p->a=p->b=0;
p++;
p->a=p->b=0;
p++;
}
/* Clear NT, so that we won't have troubles with that later on */
__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");
ltr(0);
lldt(0);
outb_p(0x36,0x43); /* binary, mode 3, LSB/MSB, ch 0 */
outb_p(LATCH & 0xff , 0x40); /* LSB */
outb(LATCH >> 8 , 0x40); /* MSB */
set_intr_gate(0x20,&timer_interrupt);
outb(inb_p(0x21)&~0x01,0x21);
set_system_gate(0x80,&system_call);
}
/*
* linux/kernel/system_call.s
*
* (C) 1991 Linus Torvalds
*/
/*
* system_call.s contains the system-call low-level handling routines.
* This also contains the timer-interrupt handler, as some of the code is
* the same. The hd- and flopppy-interrupts are also here.
*
* NOTE: This code handles signal-recognition, which happens every time
* after a timer-interrupt and after each system call. Ordinary interrupts
* don't handle signal-recognition, as that would clutter them up totally
* unnecessarily.
*
* Stack layout in 'ret_from_system_call':
*
* 0(%esp) - %eax
* 4(%esp) - %ebx
* 8(%esp) - %ecx
* C(%esp) - %edx
* 10(%esp) - %fs
* 14(%esp) - %es
* 18(%esp) - %ds
* 1C(%esp) - %eip
* 20(%esp) - %cs
* 24(%esp) - %eflags
* 28(%esp) - %oldesp
* 2C(%esp) - %oldss
*/
SIG_CHLD = 17
EAX = 0x00
EBX = 0x04
ECX = 0x08
EDX = 0x0C
FS = 0x10
ES = 0x14
DS = 0x18
EIP = 0x1C
CS = 0x20
EFLAGS = 0x24
OLDESP = 0x28
OLDSS = 0x2C
state = 0 # these are offsets into the task-struct.
counter = 4
priority = 8
signal = 12
sigaction = 16 # MUST be 16 (=len of sigaction)
blocked = (33*16)
# offsets within sigaction
sa_handler = 0
sa_mask = 4
sa_flags = 8
sa_restorer = 12
nr_system_calls = 72
/*
* Ok, I get parallel printer interrupts while using the floppy for some
* strange reason. Urgel. Now I just ignore them.
*/
.globl _system_call,_sys_fork,_timer_interrupt,_sys_execve
.globl _hd_interrupt,_floppy_interrupt,_parallel_interrupt
.globl _device_not_available, _coprocessor_error
.align 2
bad_sys_call:
movl $-1,%eax
iret
.align 2
reschedule:
pushl $ret_from_sys_call
jmp _schedule
.align 2
_system_call:
cmpl $nr_system_calls-1,%eax
ja bad_sys_call
push %ds
push %es
push %fs
pushl %edx
pushl %ecx # push %ebx,%ecx,%edx as parameters
pushl %ebx # to the system call
movl $0x10,%edx # set up ds,es to kernel space
mov %dx,%ds
mov %dx,%es
movl $0x17,%edx # fs points to local data space
mov %dx,%fs
call _sys_call_table(,%eax,4)
pushl %eax
movl _current,%eax
cmpl $0,state(%eax) # state
jne reschedule
cmpl $0,counter(%eax) # counter
je reschedule
ret_from_sys_call:
movl _current,%eax # task[0] cannot have signals
cmpl _task,%eax
je 3f
cmpw $0x0f,CS(%esp) # was old code segment supervisor ?
jne 3f
cmpw $0x17,OLDSS(%esp) # was stack segment = 0x17 ?
jne 3f
movl signal(%eax),%ebx
movl blocked(%eax),%ecx
notl %ecx
andl %ebx,%ecx
bsfl %ecx,%ecx
je 3f
btrl %ecx,%ebx
movl %ebx,signal(%eax)
incl %ecx
pushl %ecx
call _do_signal
popl %eax
3: popl %eax
popl %ebx
popl %ecx
popl %edx
pop %fs
pop %es
pop %ds
iret
.align 2
_coprocessor_error:
push %ds
push %es
push %fs
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax
mov %ax,%fs
pushl $ret_from_sys_call
jmp _math_error
.align 2
_device_not_available:
push %ds
push %es
push %fs
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax
mov %ax,%fs
pushl $ret_from_sys_call
clts # clear TS so that we can use math
movl %cr0,%eax
testl $0x4,%eax # EM (math emulation bit)
je _math_state_restore
pushl %ebp
pushl %esi
pushl %edi
call _math_emulate
popl %edi
popl %esi
popl %ebp
ret
.align 2
_timer_interrupt:
push %ds # save ds,es and put kernel data space
push %es # into them. %fs is used by _system_call
push %fs
pushl %edx # we save %eax,%ecx,%edx as gcc doesn't
pushl %ecx # save those across function calls. %ebx
pushl %ebx # is saved as we use that in ret_sys_call
pushl %eax
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax
mov %ax,%fs
incl _jiffies
movb $0x20,%al # EOI to interrupt controller #1
outb %al,$0x20
movl CS(%esp),%eax
andl $3,%eax # %eax is CPL (0 or 3, 0=supervisor)
pushl %eax
call _do_timer # 'do_timer(long CPL)' does everything from
addl $4,%esp # task switching to accounting ...
jmp ret_from_sys_call
.align 2
_sys_execve:
lea EIP(%esp),%eax
pushl %eax
call _do_execve
addl $4,%esp
ret
.align 2
_sys_fork:
call _find_empty_process
testl %eax,%eax
js 1f
push %gs
pushl %esi
pushl %edi
pushl %ebp
pushl %eax
call _copy_process
addl $20,%esp
1: ret
_hd_interrupt:
pushl %eax
pushl %ecx
pushl %edx
push %ds
push %es
push %fs
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax
mov %ax,%fs
movb $0x20,%al
outb %al,$0xA0 # EOI to interrupt controller #1
jmp 1f # give port chance to breathe
1: jmp 1f
1: xorl %edx,%edx
xchgl _do_hd,%edx
testl %edx,%edx
jne 1f
movl $_unexpected_hd_interrupt,%edx
1: outb %al,$0x20
call *%edx # "interesting" way of handling intr.
pop %fs
pop %es
pop %ds
popl %edx
popl %ecx
popl %eax
iret
_floppy_interrupt:
pushl %eax
pushl %ecx
pushl %edx
push %ds
push %es
push %fs
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax
mov %ax,%fs
movb $0x20,%al
outb %al,$0x20 # EOI to interrupt controller #1
xorl %eax,%eax
xchgl _do_floppy,%eax
testl %eax,%eax
jne 1f
movl $_unexpected_floppy_interrupt,%eax
1: call *%eax # "interesting" way of handling intr.
pop %fs
pop %es
pop %ds
popl %edx
popl %ecx
popl %eax
iret
_parallel_interrupt:
pushl %eax
movb $0x20,%al
outb %al,$0x20
popl %eax
iret
/*
* linux/kernel/traps.c
*
* (C) 1991 Linus Torvalds
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'asm.s'. Currently mostly a debugging-aid, will be extended
* to mainly kill the offending process (probably by giving it a signal,
* but possibly by killing it outright if necessary).
*/
#include <string.h>
#include <linux/head.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/io.h>
#define get_seg_byte(seg,addr) ({ \
register char __res; \
__asm__("push %%fs;mov %%ax,%%fs;movb %%fs:%2,%%al;pop %%fs" \
:"=a" (__res):"0" (seg),"m" (*(addr))); \
__res;})
#define get_seg_long(seg,addr) ({ \
register unsigned long __res; \
__asm__("push %%fs;mov %%ax,%%fs;movl %%fs:%2,%%eax;pop %%fs" \
:"=a" (__res):"0" (seg),"m" (*(addr))); \
__res;})
#define _fs() ({ \
register unsigned short __res; \
__asm__("mov %%fs,%%ax":"=a" (__res):); \
__res;})
int do_exit(long code);
void page_exception(void);
void divide_error(void);
void debug(void);
void nmi(void);
void int3(void);
void overflow(void);
void bounds(void);
void invalid_op(void);
void device_not_available(void);
void double_fault(void);
void coprocessor_segment_overrun(void);
void invalid_TSS(void);
void segment_not_present(void);
void stack_segment(void);
void general_protection(void);
void page_fault(void);
void coprocessor_error(void);
void reserved(void);
void parallel_interrupt(void);
void irq13(void);
static void die(char * str,long esp_ptr,long nr)
{
long * esp = (long *) esp_ptr;
int i;
printk("%s: %04x\n\r",str,nr&0xffff);
printk("EIP:\t%04x:%p\nEFLAGS:\t%p\nESP:\t%04x:%p\n",
esp[1],esp[0],esp[2],esp[4],esp[3]);
printk("fs: %04x\n",_fs());
printk("base: %p, limit: %p\n",get_base(current->ldt[1]),get_limit(0x17));
if (esp[4] == 0x17) {
printk("Stack: ");
for (i=0;i<4;i++)
printk("%p ",get_seg_long(0x17,i+(long *)esp[3]));
printk("\n");
}
str(i);
printk("Pid: %d, process nr: %d\n\r",current->pid,0xffff & i);
for(i=0;i<10;i++)
printk("%02x ",0xff & get_seg_byte(esp[1],(i+(char *)esp[0])));
printk("\n\r");
do_exit(11); /* play segment exception */
}
void do_double_fault(long esp, long error_code)
{
die("double fault",esp,error_code);
}
void do_general_protection(long esp, long error_code)
{
die("general protection",esp,error_code);
}
void do_divide_error(long esp, long error_code)
{
die("divide error",esp,error_code);
}
void do_int3(long * esp, long error_code,
long fs,long es,long ds,
long ebp,long esi,long edi,
long edx,long ecx,long ebx,long eax)
{
int tr;
__asm__("str %%ax":"=a" (tr):"0" (0));
printk("eax\t\tebx\t\tecx\t\tedx\n\r%8x\t%8x\t%8x\t%8x\n\r",
eax,ebx,ecx,edx);
printk("esi\t\tedi\t\tebp\t\tesp\n\r%8x\t%8x\t%8x\t%8x\n\r",
esi,edi,ebp,(long) esp);
printk("\n\rds\tes\tfs\ttr\n\r%4x\t%4x\t%4x\t%4x\n\r",
ds,es,fs,tr);
printk("EIP: %8x CS: %4x EFLAGS: %8x\n\r",esp[0],esp[1],esp[2]);
}
void do_nmi(long esp, long error_code)
{
die("nmi",esp,error_code);
}
void do_debug(long esp, long error_code)
{
die("debug",esp,error_code);
}
void do_overflow(long esp, long error_code)
{
die("overflow",esp,error_code);
}
void do_bounds(long esp, long error_code)
{
die("bounds",esp,error_code);
}
void do_invalid_op(long esp, long error_code)
{
die("invalid operand",esp,error_code);
}
void do_device_not_available(long esp, long error_code)
{
die("device not available",esp,error_code);
}
void do_coprocessor_segment_overrun(long esp, long error_code)
{
die("coprocessor segment overrun",esp,error_code);
}
void do_invalid_TSS(long esp,long error_code)
{
die("invalid TSS",esp,error_code);
}
void do_segment_not_present(long esp,long error_code)
{
die("segment not present",esp,error_code);
}
void do_stack_segment(long esp,long error_code)
{
die("stack segment",esp,error_code);
}
void do_coprocessor_error(long esp, long error_code)
{
if (last_task_used_math != current)
return;
die("coprocessor error",esp,error_code);
}
void do_reserved(long esp, long error_code)
{
die("reserved (15,17-47) error",esp,error_code);
}
void trap_init(void)
{
int i;
set_trap_gate(0,&divide_error);
set_trap_gate(1,&debug);
set_trap_gate(2,&nmi);
set_system_gate(3,&int3); /* int3-5 can be called from all */
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_trap_gate(8,&double_fault);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_trap_gate(14,&page_fault);
set_trap_gate(15,&reserved);
set_trap_gate(16,&coprocessor_error);
for (i=17;i<48;i++)
set_trap_gate(i,&reserved);
set_trap_gate(45,&irq13);
outb_p(inb_p(0x21)&0xfb,0x21);
outb(inb_p(0xA1)&0xdf,0xA1);
set_trap_gate(39,&parallel_interrupt);
}
/*
* linux/mm/memory.c
*
* (C) 1991 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
#include <signal.h>
#include <asm/system.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
volatile void do_exit(long code);
static inline volatile void oom(void)
{
printk("out of memory\n\r");
do_exit(SIGSEGV);
}
#define invalidate() \
__asm__("movl %%eax,%%cr3"::"a" (0))
/* these are not to be changed without changing head.s etc */
#define LOW_MEM 0x100000
#define PAGING_MEMORY (15*1024*1024)
#define PAGING_PAGES (PAGING_MEMORY>>12)
#define MAP_NR(addr) (((addr)-LOW_MEM)>>12)
#define USED 100
#define CODE_SPACE(addr) ((((addr)+4095)&~4095) < \
current->start_code + current->end_code)
static long HIGH_MEMORY = 0;
#define copy_page(from,to) \
__asm__("cld ; rep ; movsl"::"S" (from),"D" (to),"c" (1024):"cx","di","si")
static unsigned char mem_map [ PAGING_PAGES ] = {0,};
/*
* Get physical address of first (actually last :-) free page, and mark it
* used. If no free pages left, return 0.
*/
unsigned long get_free_page(void)
{
register unsigned long __res asm("ax");
__asm__("std ; repne ; scasb\n\t"
"jne 1f\n\t"
"movb $1,1(%%edi)\n\t"
"sall $12,%%ecx\n\t"
"addl %2,%%ecx\n\t"
"movl %%ecx,%%edx\n\t"
"movl $1024,%%ecx\n\t"
"leal 4092(%%edx),%%edi\n\t"
"rep ; stosl\n\t"
"movl %%edx,%%eax\n"
"1:"
:"=a" (__res)
:"0" (0),"i" (LOW_MEM),"c" (PAGING_PAGES),
"D" (mem_map+PAGING_PAGES-1)
:"di","cx","dx");
return __res;
}
/*
* Free a page of memory at physical address 'addr'. Used by
* 'free_page_tables()'
*/
void free_page(unsigned long addr)
{
if (addr < LOW_MEM) return;
if (addr >= HIGH_MEMORY)
panic("trying to free nonexistent page");
addr -= LOW_MEM;
addr >>= 12;
if (mem_map[addr]--) return;
mem_map[addr]=0;
panic("trying to free free page");
}
/*
* This function frees a continuos block of page tables, as needed
* by 'exit()'. As does copy_page_tables(), this handles only 4Mb blocks.
*/
int free_page_tables(unsigned long from,unsigned long size)
{
unsigned long *pg_table;
unsigned long * dir, nr;
if (from & 0x3fffff)
panic("free_page_tables called with wrong alignment");
if (!from)
panic("Trying to free up swapper memory space");
size = (size + 0x3fffff) >> 22;
dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
for ( ; size-->0 ; dir++) {
if (!(1 & *dir))
continue;
pg_table = (unsigned long *) (0xfffff000 & *dir);
for (nr=0 ; nr<1024 ; nr++) {
if (1 & *pg_table)
free_page(0xfffff000 & *pg_table);
*pg_table = 0;
pg_table++;
}
free_page(0xfffff000 & *dir);
*dir = 0;
}
invalidate();
return 0;
}
/*
* Well, here is one of the most complicated functions in mm. It
* copies a range of linerar addresses by copying only the pages.
* Let's hope this is bug-free, 'cause this one I don't want to debug :-)
*
* Note! We don't copy just any chunks of memory - addresses have to
* be divisible by 4Mb (one page-directory entry), as this makes the
* function easier. It's used only by fork anyway.
*
* NOTE 2!! When from==0 we are copying kernel space for the first
* fork(). Then we DONT want to copy a full page-directory entry, as
* that would lead to some serious memory waste - we just copy the
* first 160 pages - 640kB. Even that is more than we need, but it
* doesn't take any more memory - we don't copy-on-write in the low
* 1 Mb-range, so the pages can be shared with the kernel. Thus the
* special case for nr=xxxx.
*/
int copy_page_tables(unsigned long from,unsigned long to,long size)
{
unsigned long * from_page_table;
unsigned long * to_page_table;
unsigned long this_page;
unsigned long * from_dir, * to_dir;
unsigned long nr;
if ((from&0x3fffff) || (to&0x3fffff))
panic("copy_page_tables called with wrong alignment");
from_dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
to_dir = (unsigned long *) ((to>>20) & 0xffc);
size = ((unsigned) (size+0x3fffff)) >> 22;
for( ; size-->0 ; from_dir++,to_dir++) {
if (1 & *to_dir)
panic("copy_page_tables: already exist");
if (!(1 & *from_dir))
continue;
from_page_table = (unsigned long *) (0xfffff000 & *from_dir);
if (!(to_page_table = (unsigned long *) get_free_page()))
return -1; /* Out of memory, see freeing */
*to_dir = ((unsigned long) to_page_table) | 7;
nr = (from==0)?0xA0:1024;
for ( ; nr-- > 0 ; from_page_table++,to_page_table++) {
this_page = *from_page_table;
if (!(1 & this_page))
continue;
this_page &= ~2;
*to_page_table = this_page;
if (this_page > LOW_MEM) {
*from_page_table = this_page;
this_page -= LOW_MEM;
this_page >>= 12;
mem_map[this_page]++;
}
}
}
invalidate();
return 0;
}
/*
* This function puts a page in memory at the wanted address.
* It returns the physical address of the page gotten, 0 if
* out of memory (either when trying to access page-table or
* page.)
*/
unsigned long put_page(unsigned long page,unsigned long address)
{
unsigned long tmp, *page_table;
/* NOTE !!! This uses the fact that _pg_dir=0 */
if (page < LOW_MEM || page >= HIGH_MEMORY)
printk("Trying to put page %p at %p\n",page,address);
if (mem_map[(page-LOW_MEM)>>12] != 1)
printk("mem_map disagrees with %p at %p\n",page,address);
page_table = (unsigned long *) ((address>>20) & 0xffc);
if ((*page_table)&1)
page_table = (unsigned long *) (0xfffff000 & *page_table);
else {
if (!(tmp=get_free_page()))
return 0;
*page_table = tmp|7;
page_table = (unsigned long *) tmp;
}
page_table[(address>>12) & 0x3ff] = page | 7;
/* no need for invalidate */
return page;
}
void un_wp_page(unsigned long * table_entry)
{
unsigned long old_page,new_page;
old_page = 0xfffff000 & *table_entry;
if (old_page >= LOW_MEM && mem_map[MAP_NR(old_page)]==1) {
*table_entry |= 2;
invalidate();
return;
}
if (!(new_page=get_free_page()))
oom();
if (old_page >= LOW_MEM)
mem_map[MAP_NR(old_page)]--;
*table_entry = new_page | 7;
invalidate();
copy_page(old_page,new_page);
}
/*
* This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address
* and decrementing the shared-page counter for the old page.
*
* If it's in code space we exit with a segment error.
*/
void do_wp_page(unsigned long error_code,unsigned long address)
{
#if 0
/* we cannot do this yet: the estdio library writes to code space */
/* stupid, stupid. I really want the libc.a from GNU */
if (CODE_SPACE(address))
do_exit(SIGSEGV);
#endif
un_wp_page((unsigned long *)
(((address>>10) & 0xffc) + (0xfffff000 &
*((unsigned long *) ((address>>20) &0xffc)))));
}
void write_verify(unsigned long address)
{
unsigned long page;
if (!( (page = *((unsigned long *) ((address>>20) & 0xffc)) )&1))
return;
page &= 0xfffff000;
page += ((address>>10) & 0xffc);
if ((3 & *(unsigned long *) page) == 1) /* non-writeable, present */
un_wp_page((unsigned long *) page);
return;
}
void get_empty_page(unsigned long address)
{
unsigned long tmp;
if (!(tmp=get_free_page()) || !put_page(tmp,address)) {
free_page(tmp); /* 0 is ok - ignored */
oom();
}
}
/*
* try_to_share() checks the page at address "address" in the task "p",
* to see if it exists, and if it is clean. If so, share it with the current
* task.
*
* NOTE! This assumes we have checked that p != current, and that they
* share the same executable.
*/
static int try_to_share(unsigned long address, struct task_struct * p)
{
unsigned long from;
unsigned long to;
unsigned long from_page;
unsigned long to_page;
unsigned long phys_addr;
from_page = to_page = ((address>>20) & 0xffc);
from_page += ((p->start_code>>20) & 0xffc);
to_page += ((current->start_code>>20) & 0xffc);
/* is there a page-directory at from? */
from = *(unsigned long *) from_page;
if (!(from & 1))
return 0;
from &= 0xfffff000;
from_page = from + ((address>>10) & 0xffc);
phys_addr = *(unsigned long *) from_page;
/* is the page clean and present? */
if ((phys_addr & 0x41) != 0x01)
return 0;
phys_addr &= 0xfffff000;
if (phys_addr >= HIGH_MEMORY || phys_addr < LOW_MEM)
return 0;
to = *(unsigned long *) to_page;
if (!(to & 1))
if (to = get_free_page())
*(unsigned long *) to_page = to | 7;
else
oom();
to &= 0xfffff000;
to_page = to + ((address>>10) & 0xffc);
if (1 & *(unsigned long *) to_page)
panic("try_to_share: to_page already exists");
/* share them: write-protect */
*(unsigned long *) from_page &= ~2;
*(unsigned long *) to_page = *(unsigned long *) from_page;
invalidate();
phys_addr -= LOW_MEM;
phys_addr >>= 12;
mem_map[phys_addr]++;
return 1;
}
/*
* share_page() tries to find a process that could share a page with
* the current one. Address is the address of the wanted page relative
* to the current data space.
*
* We first check if it is at all feasible by checking executable->i_count.
* It should be >1 if there are other tasks sharing this inode.
*/
static int share_page(unsigned long address)
{
struct task_struct ** p;
if (!current->executable)
return 0;
if (current->executable->i_count < 2)
return 0;
for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
if (!*p)
continue;
if (current == *p)
continue;
if ((*p)->executable != current->executable)
continue;
if (try_to_share(address,*p))
return 1;
}
return 0;
}
void do_no_page(unsigned long error_code,unsigned long address)
{
int nr[4];
unsigned long tmp;
unsigned long page;
int block,i;
address &= 0xfffff000;
tmp = address - current->start_code;
if (!current->executable || tmp >= current->end_data) {
get_empty_page(address);
return;
}
if (share_page(tmp))
return;
if (!(page = get_free_page()))
oom();
/* remember that 1 block is used for header */
block = 1 + tmp/BLOCK_SIZE;
for (i=0 ; i<4 ; block++,i++)
nr[i] = bmap(current->executable,block);
bread_page(page,current->executable->i_dev,nr);
i = tmp + 4096 - current->end_data;
tmp = page + 4096;
while (i-- > 0) {
tmp--;
*(char *)tmp = 0;
}
if (put_page(page,address))
return;
free_page(page);
oom();
}
void mem_init(long start_mem, long end_mem)
{
int i;
HIGH_MEMORY = end_mem;
for (i=0 ; i<PAGING_PAGES ; i++)
mem_map[i] = USED;
i = MAP_NR(start_mem);
end_mem -= start_mem;
end_mem >>= 12;
while (end_mem-->0)
mem_map[i++]=0;
}
void calc_mem(void)
{
int i,j,k,free=0;
long * pg_tbl;
for(i=0 ; i<PAGING_PAGES ; i++)
if (!mem_map[i]) free++;
printk("%d pages free (of %d)\n\r",free,PAGING_PAGES);
for(i=2 ; i<1024 ; i++) {
if (1&pg_dir[i]) {
pg_tbl=(long *) (0xfffff000 & pg_dir[i]);
for(j=k=0 ; j<1024 ; j++)
if (pg_tbl[j]&1)
k++;
printk("Pg-dir[%d] uses %d pages\n",i,k);
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment