Generate TV Script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
gen_length = 500 | |
""" | |
The prime word is used as the start word for the text generation. | |
To generate different text try different prime words like: | |
'marge_simpson' | |
'bart_simpson' | |
'lisa_simpson' | |
'seymour_skinner' | |
'chief_wiggum' | |
'judge_snyder' | |
""" | |
prime_word = 'homer_simpson' | |
loaded_graph = tf.Graph() | |
with tf.Session(graph=loaded_graph) as sess: | |
# Load saved model | |
loader = tf.train.import_meta_graph(save_dir + '.meta') | |
loader.restore(sess, save_dir) | |
# Get Tensors from loaded model | |
input_text, initial_state, final_state, probs = get_tensors(loaded_graph) | |
# Sentences generation setup | |
gen_sentences = [prime_word + ':'] | |
prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) | |
# Generate sentences | |
for n in range(gen_length): | |
# Dynamic Input | |
dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] | |
dyn_seq_length = len(dyn_input[0]) | |
# Get Prediction | |
probabilities, prev_state = sess.run( | |
[probs, final_state], | |
{input_text: dyn_input, initial_state: prev_state}) | |
pred_word = pick_word(probabilities[0][dyn_seq_length-1], int_to_vocab) | |
gen_sentences.append(pred_word) | |
# Remove tokens | |
tv_script = ' '.join(gen_sentences) | |
for key, token in tokenized_punctuation.items(): | |
ending = ' ' if key in ['\n', '(', '"'] else '' | |
tv_script = tv_script.replace(' ' + token.lower(), key) | |
tv_script = tv_script.replace('\n ', '\n') | |
tv_script = tv_script.replace('( ', '(') | |
print(tv_script) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment