Preprocess the data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
tokenized_punctuation = { | |
'.' : '||Period||', | |
',' : '||Comma||', | |
'"' : '||Quotation_Mark||', | |
';' : '||Semicolon||', | |
'!' : '||Exclamation_Mark||', | |
'?' : '||Question_Mark||', | |
'(' : '||Left_Parentheses||', | |
')' : '||Right_Parentheses||', | |
'--' : '||Dash||', | |
'\n' : '||Return||' | |
} | |
text = "\n".join(clean_text) | |
for key, token in tokenized_punctuation .items(): | |
text = text.replace(key, ' {} '.format(token)) | |
text = text.lower() | |
text = text.split() | |
word_counts = Counter(text) | |
sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) | |
int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)} | |
vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} | |
int_text = [vocab_to_int[word] for word in text] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment