Skip to content

Instantly share code, notes, and snippets.

@christianp
Created June 15, 2011 15:10
Show Gist options
  • Save christianp/1027302 to your computer and use it in GitHub Desktop.
Save christianp/1027302 to your computer and use it in GitHub Desktop.
a demo exam for Numbas
{
name: TestA
extensions: [jsxgraph]
questions: [
{
name: Question 1
variables: {
a: random(1..11)
g: "switch(a=1, random(2..11),a=2,random(3..11#2),a=3,random(4,5,7,8,10,11),a=4,random(5,7,9,11),a=5, random(6,7,8,9,11),a=6,random(7,11),a=7,random(8,9,10,11),a=8,random(9,11),a=9,random(10,11),a=10,11,a=11,12)"
b: "switch(f=2,1,f=3,random(1,2),f=4,random(1,3),f=5, random(1..4),f=6,random(1,5),f=7,random(1..6),f=8,random(1,3,5,7),f=9,random(1,2,4,5,7,8),f=10,random(1,3,7,9),f=11,random(1..10))"
f: "switch(g=2,random(3..11#2),g=3,random(2,4,5,7,8,10,11),g=4,random(3,5,7,9,11),g=5, random(2,3,4,6,7,8,9,11),g=6,random(5,7,11),g=7,random(2,3,4,5,6,8,9,10,11),g=8,random(3,5,7,9,11),g=9,random(2,4,5,7,8,10,11),g=10,random(3,7,9),g=11,random(2..10),g=12,random(5,7,11))"
s1: "random(1,-1)"
dosomething: "if(s1<0,'Take away', 'Add')"
action: "if(s1<0,'Taking away', 'Adding')"
action1: "if(s1<0,'taking away', 'adding')"
}
statement: """
{dosomething} the following fractions and reduce the resulting fraction to lowest form.
Input your answer as a fraction and not as a decimal.
"""
parts: [
{
type: GapFill
prompt: """
\[\simplify{{a} / {g} + ({s1*b} / {f})}\]
Input your answer here: [[0]]
Your answer must be of the form %(monospace)p/q% for suitable integers $p$ and $q$. No decimal numbers allowed.
You can get help by clicking on *Show steps*. If you do so you will lose &#xbd; mark.
"""
gaps: [
{
type: jme
answer:"{a*f+s1*b*g}/{g*f}"
checkingtype: absdiff
checkingaccuracy: 0.0001
maxlength:{
length:7
message: "Your answer is too long. Make sure it is in the correct form."
}
musthave:{
strings:[/],
message: "You must write your answer in the form %(monospace)p/q% for integers $p$ and $q$."
}
notallowed: {
strings:[+,.,(,),1-,2-,3-,4-,5-,6-,7-,8-,9-],
message: "You must write your answer in the form %(monospace)p/q% for integers $p$ and $q$."
}
marks: 1
}
]
steps: [
{
type: information
prompt: """The rule for {action1} fractions is \[\simplify{a/b+ {s1}*(c/d)=(a*d+{s1}*b*c)/(b*d)}\]"""
}
]
stepspenalty: 0.5
}
]
advice: """
The rule for {action1} fractions is \[\simplify{a/b+ {s1}*(c/d)=(a*d+{s1}*b*c)/(b*d)}\]
In this case we have:
\[\simplify[0111110011111111]{{a} / {g} + ({s1*b} / {f}) = ({a} * {f} + {g} * {s1*b}) / ({g} * {f}) ={a*f+s1*g*b}/{g*f}}\]
Note that this fraction is in its lowest form as there are no common factors in the denominator and the numerator
"""
}
{
name: Question 2
variables: {
a: random(1..11)
g: "switch(a=1, random(2..11),a=2,random(3..11#2),a=3,random(4,5,7,8,10,11),a=4,random(5,7,9,11),a=5, random(6,7,8,9,11),a=6,random(7,11),a=7,random(8,9,10,11),a=8,random(9,11),a=9,random(10,11),a=10,11,a=11,12)"
b: "switch(f=2,1,f=3,random(1,2),f=4,random(1,3),f=5, random(1..4),f=6,random(1,5),f=7,random(1..6),f=8,random(1,3,5,7),f=9,random(1,2,4,5,7,8),f=10,random(1,3,7,9),f=11,random(1..10))"
f: "switch(g=2,random(3..11#2),g=3,random(2,4,5,7,8,10,11),g=4,random(3,5,7,9,11),g=5, random(2,3,4,6,7,8,9,11),g=6,random(5,7,11),g=7,random(2,3,4,5,6,8,9,10,11),g=8,random(3,5,7,9,11),g=9,random(2,4,5,7,8,10,11),g=10,random(3,7,9),g=11,random(2..10),g=12,random(5,7,11))"
s1: "if(a*f+s*b*g=1,-s,s)"
s: "random(1,-1)"
}
statement: """
Write the following expression as a single fraction in its lowest form:
"""
parts: [
{
type: GapFill
prompt: """
\[\simplify{{g} / ({a} + {s1} * ({b * g} / {f}))}\]
Input your answer here: [[0]]
Your answer must be of the form %(monospace)p/q% for suitable integers $p$ and $q$. No decimal numbers allowed.
Do not include brackets in your answer.
"""
gaps: [
{
type: jme
answer:"{g*f}/{a*f+s1*b*g}"
checkingtype: absdiff
checkingaccuracy:0.0001
maxlength:{
length:7
message: "Your answer is too long. Make sure it is in the correct form."
}
musthave:{
strings:[/],
message: "You must write your answer in the form %(monospace)p/q% for integers $p$ and $q$."
}
notallowed: {
strings:[+,.,(,),1-,2-,3-,4-,5-,6-,7-,8-,9-],
message: "You must write your answer in the form %(monospace)p/q% for integers $p$ and $q$."
}
marks: 1
}
]
}
]
advice: """
We have:
\[\simplify[unitFactor]{{g} / ({a} + {s1} * ({b * g} / {f})) = {g} / (({a} * {f} + {s1} * {b * g}) / {f}) ={g} / (({a * f + s1 * b * g}) / {f})= {g} * ({f} / ({a * f + s1 * b * g})) = ({g * f} / {(a * f + s1 * b * g)})}\]
Here we use the result that dividing by a fraction $\frac{a}{b}$ is the same as multiplying by $\frac{b}{a}$.
The resulting fraction is in lowest form i.e. the top and bottom do not have a common factor.
"""
}
{
name: Question 3
variables: {
a: "s1*random(2..12)"
b: "s2*random(1..12)"
c: "if(a=tc,tc+1,tc)"
tc: "s3*random(2..20)"
td: "random(1..20)"
d: "if(b=td,td+1,td)"
s1: "random(1,-1)"
s2: "random(1,-1)"
s3: "random(1,-1)"
}
statement: "Solve the following linear equation for $x$."
parts: [
{
type: GapFill
prompt: """
\[\simplify[111111011111111]{{a} * x + {b} = {c} * x + {d}}\]
Input your answer as a fraction or an integer. Do NOT input the answer as a decimal.
$x\;=$[[0]]"""
gaps: [
{type: jme, answer: "{d-b}/{a-c}", marks: 1}
]
}
]
advice:
"""
Given the equation \[\simplify[1111110111111111]{{a}x+{b}={c}x+{d}}\] we first collect together all the constant terms, and collect together all the terms in $x$.
The equation can then be written as:
\[\simplify[1111110111111111]{({a}-{c})x=({d}+{-b})}\] i.e.
\[\simplify{{a-c}x={d-b}}\]
which gives \[x =\simplify{{(d-b)/(a-c)}}\] as the solution.
"""
}
{
name: Question 4
variables: {
a: "sa*random(2..9)"
a2: abs(a)
b: "sb*random(1..9)"
c: "sc*random(1..9)"
sa: "random(1,-1)"
sb: "random(1,-1)"
sc: "random(1,-1)"
a1: "switch(a2=2,random(3,5,7,9),a2=3,random(2,4,5,7),a2=4,random(3,5,7,9),a2=5,random(3,4,6,7,9),a2=6,random(4,5,7,8,9),a2=7,random(3,4,5,6,8,9),a2=8,random(3,5,6,7,9),a2=9,random(2,4,5,7,8),9)"
b1: "if(a*b2=a1*b,b2+1,b2)"
c1: "sc1*random(1..9)"
s1:"random(1,-1)"
sc1:"random(1,-1)"
b2: "random(2..9)"
aort: "if(b*b1>0,'take away the equation','add the equation')"
fromorto: "if(b*b1>0,'from','to')"
s6: "if(b*b1>0,-1,1)"
this: "lcm(abs(b),abs(b1))/abs(b)"
that: "lcm(abs(b),abs(b1))/abs(b1)"
}
statement: "Solve the simultaneous equations for $x$ and $y$. Input your answers as fractions NOT as decimals."
parts: [
{
type: GapFill
prompt: """
\[ \begin{eqnarray}
\simplify[1111110111111111]{{a}x+{b}y}&=&\var{c}\\
\simplify[1111110111111111]{{a1}x+{b1}y}&=&\var{c1}
\end{eqnarray} \]
$x=\phantom{{}}$[[0]]
$y=\phantom{{}}$[[1]]"""
gaps: [
{type: jme
answer: "{c*b1-b*c1}/{b1*a-a1*b}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input as a fraction or an integer not as a decimal}
marks: 1}
{type: jme
answer: "{c*a1-a*c1}/{b*a1-a*b1}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input as a fraction or an integer not as a decimal}
marks:1}
]
}
]
advice:
"""
\[ \begin{eqnarray}
\simplify[1111110111111111]{{a}x+{b}y}&=&\var{c}&\mbox{ ........(1)}\\
\simplify[1111110111111111]{{a1}x+{b1}y}&=&\var{c1}&\mbox{ ........(2)}
\end{eqnarray} \]
To get a solution for $x$ multiply equation (1) by {this} and equation (2) by {that}
This gives:
\[ \begin{eqnarray}
\simplify[1111110111111111]{{a*this}x+{b*this}y}&=&\var{this*c}&\mbox{ ........(3)}\\
\simplify[1111110111111111]{{a1*that}x+{b1*that}y}&=&\var{that*c1}&\mbox{ ........(4)}
\end{eqnarray} \]
Now {aort} (4) {fromorto} equation (3) to get
\[\simplify[1111110111111111]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\]
And so we get the solution for $x$:
\[x = \simplify{{c*b1-b*c1}/{b1*a-a1*b}}\]
Substituting this value into any of the equations (1) and (2) gives:
\[y = \simplify{{c*a1-a*c1}/{b*a1-a*b1}}\]
You can check that these solutions are correct by seeing if they satisfy both equations (1) and (2) by substituting these values into the equations.
"""
}
{
name: Question 5
statement: """
notextile.
<jsxgraph language="javascript">
board.create('axis',[[0.0,0.0],[1.0,0.0]]);
board.create('axis',[[0.0,0.0],[0.0,1.0]]);
var pA = board.create('point',[0,0],{name: '', face: 'x',size:7});
var l1 = board.create('line',[[0,variables.c1],[-variables.c1/variables.m1,0]],{straightFirst:true,straightLast:true});
board.create('text',[-2,-2*variables.m1+variables.c1,function(){return '\\[l_1\\]';}],{fontSize:'100%'});
var l2 = board.create('line',[[0,variables.c2],[-variables.c2/variables.m2,0]],{straightFirst:true,straightLast:true});
var sp11 = board.create('point',[0,0],{visible:false});
var sp12 = board.create('point',[1,0],{visible:false});
var sl1 = board.create('line',[sp11,sp12],{visible:false,strokeColor:'#0f0'});
board.create('text',[-2,-2*variables.m2+variables.c2,function(){return '\\[l_2\\]';}],{fontSize:'100%'});
var xInput = $('#p0g0 > input');
var yInput = $('#p0g1 > input');
$('#'+id).bind('mouseup',function(){
if(parseFloat(xInput.val())!=pA.X())
$('#p0g0 > input').val(pA.X()).trigger('input');
if(parseFloat(yInput.val())!=pA.Y())
$('#p0g1 > input').val(pA.Y()).trigger('input');
});
var changeX = function() {
var x = parseFloat(xInput.val());
if(util.isFloat(x))
pA.moveTo([x,pA.Y()],200);
};
xInput.bind('change', changeX).bind('input',changeX);
var changeY = function() {
var y = parseFloat(yInput.val());
if(util.isFloat(y))
pA.moveTo([pA.X(),y],200);
};
yInput.bind('change', changeY).bind('input',changeY);
var changeLine1 = function() {
var m = parseFloat($('#p1g0>input').val());
var c = parseFloat($('#p1g1>input').val());
if(util.isFloat(m) &amp;&amp; util.isFloat(c))
{
sl1.showElement();
sp11.moveTo([0,c],200);
if(m==0)
{
sp12.moveTo([1,c],200);
}
else if(c==0)
{
sp12.moveTo([m,m],200);
}
else
{
sp12.moveTo([-c/m,0],200);
}
}
else
{
sl1.hideElement();
}
};
$('#p1g0>input,#p1g1>input').bind('input',changeLine1).bind('change',changeLine1);
</jsxgraph>
"""
variables: {
ix: "random(-1..2#0.2)"
iy: "random(0.4..2#0.2)*random(-1,1)"
m1: "random(0.2..1#0.2)*random(-1,1)"
c1: "iy-m1*ix"
m2: "-sgn(m1)*random(0.2..1#0.2)"
c2: "iy-m2*ix"
}
parts: [
{
type: gapfill
prompt: """
The above graph shows two lines $l_1$ and $l_2$ which intersect.
You are asked to find the point of intersection graphically and using values for the slope and intersection with the $y$-axis, to find the equation of line $l_1$.
Enter the co-ordinates of the point of intersection of $l_1$ and $l_2$, or position the red cross over the intersection. Your answer must be correct to one decimal place.
$\Big ($[[0]]$\, , \,$[[1]]$\Big )$
"""
marks: 1
gaps: [
{type: numberentry, minvalue: ix-0.05, maxvalue: ix+0.05, marks: 1}
{type: numberentry, minvalue: iy-0.05, maxvalue: iy+0.05, marks: 1}
]
}
{
type: gapfill
prompt: """
Enter the slope, $m_1$, and the intercept, $c_1$, of the line $l_1$. The line corresponding to your answer will be shown in green on the graph.
$m_1 = \;$[[0]] $,\; c_1 = \;$[[1]]
"""
gaps: [
{type: numberentry, minvalue: "m1-0.05", maxvalue: "m1+0.05", marks: 1}
{type: numberentry, minvalue: "c1-0.05", maxvalue: "c1+0.05", marks: 1}
]
}
{
type: gapfill
prompt: """
Write down the equation of the line $l_1$.
$y = \;$[[0]]
"""
gaps: [
{type: jme, answer: "{m1}*x+{c1}", marks: 2, checkingaccuracy: 0.1}
]
}
]
}
{
name: Question 6
variables: {
a: random(2..5)
c1: "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
c: "c1*s3"
d1:"switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
d: "if(d1=-b*c/a, max(d1+1,random(1..5))*s3,d1*s3)"
s3:"random(1,-1)"
b: "random(1..4)"
f: "a*b"
s1: "random(1,-1)"
s2:"random(1,-1)"
n1: "b*c+a*d"
n2: "b*c-a*d"
n3: "2*a*b"
n5: "a*b"
n4: "abs(n2)"
disc: "(b*c+a*d)^2-4*a*b*c*d"
rdis:"switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')"
rep: "switch(disc=0,'repeated', ' ')"
}
statement: """Factorise the following quadratic expression $q(x)$ into linear factors i.e. input $q(x)$ in the form
\[(ax+b)(cx+d)\] for suitable integers $a$, $b$, $c$ and $d$ ."""
parts: [
{
type: GapFill
prompt:
"""\[q(x)=\simplify[1111110111111111]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}\]
$q(x)=\;$ [[0]]
You can get more information on factorising a quadratic by clicking on Steps. You will lose 1 mark if you do so.
Input all numbers as integers and not as decimals.
"""
gaps: [
{type: jme
answer:"((({a} * x) + {( - c)}) * (({b} * x) + {( - d)}))"
answersimplification: "1111110111111111"
notallowed:{strings:[.],message: input numbers as integers not as a decimals}
notallowed: {strings: [^,x*x, x x, x(, x (,)x,) x],message:factorise the expression into two factors}
musthave: {strings: [(,)], message: factorise the expression into two factors}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """Factorisation by finding the roots
If you cannot spot a direct factorisation of a quadratic $q(x)$ then finding the roots of the equation $q(x)=0$ can help you.
For if $x=r$ and $x=s$ and are the roots then $q(x)=a(x-r)(x-s)$ for some constant $a$.
Finding the roots of a quadratic using the standard formula
We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
The two roots are
\[ x = \frac{-b +\sqrt{b^2-4ac}}{2a}\mbox{ and } x = \frac{-b -\sqrt{b^2-4ac}}{2a}\]
there are three main types of solutions depending upon the value of the discriminant $\Delta=b^2-4ac$
1. $\Delta >0$. The roots are real and distinct
2. $\Delta=0$. The roots are real and equal. Their value is $\frac{-b}{2a}$
3. $\Delta <0$. There are no real roots. The root are complex and form a complex conjugate pair.
"""
}
]
stepspenalty: 1
}
]
advice:
"""Direct Factorisation
If you can spot a direct factorisation then this is the quickest way to do this question.
For this example we have the factorisation
\[\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d} = ({a} * x + { -c}) * ({b} * x + { -d})}\]
Factorisation by finding the roots
For if $x=r$ and $x=s$ and are the roots then $q(x)=a(x-r)(x-s)$ where $a$ is the coefficient of $x^2$.
There are several methods of finding the roots - here are the main methods.
Method 1: Finding the roots of a quadratic using the standard formula
We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
The two roots are
\[ x = \frac{-b +\sqrt{b^2-4ac}}{2a}\mbox{ and } x = \frac{-b -\sqrt{b^2-4ac}}{2a}\]
there are three main types of solutions depending upon the value of the discriminant $\Delta=b^2-4ac$
1. $\Delta >0$. The roots are real and distinct
2. $\Delta=0$. The roots are real and equal. Their common value is $-\frac{b}{2a}$
3. $\Delta <0$. There are no real roots. The root are complex and form a complex conjugate pair.
For this question the discriminant of $\simplify{{a*b}x^2+{-b*c-a*d}x+{c*d}}$ is $\Delta = \simplify{{-(b*c+a*d)}^2-4*{a*b}*{c*d}={disc}}$
{rdis}.
So the {rep} roots are:
\[\begin{eqnarray}
x = \frac{\var{n1} + \sqrt{\var{disc}}}{\var{n3}} &=& \frac{\var{n1} + \var{n4} }{\var{n3}} &=& \simplify{{n1 + n4}/ {n3}}\\
x = \frac{\var{n1} - \sqrt{\var{disc}}}{\var{n3}} &=& \frac{(\var{n1} - \var{n4}) }{\var{n3}} &=& \simplify{{n1 - n4}/ {n3}}
\end{eqnarray}\]
So we see that:
\[q(x)=\simplify{{a*b}}\left(\simplify{x-{n1 + n4}/ {n3}}\right)\left(\simplify{x-{n1 - n4}/ {n3}}\right)=\simplify{({b} * x + { -d}) * ({a} * x + { -c})}\]
Next Method: Completing the square.
First we complete the square for the quadratic expression $\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\[\begin{eqnarray}
\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\var{n5}\left(\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2+ \simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2 -\simplify{ {n2^2}/{4*(a*b)^2}}\right)
\end{eqnarray}
\]
So to solve $\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\[\begin{eqnarray}
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}& -\simplify{ {n2^2}/{4*(a*b)^2}}=0\Rightarrow\\
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}&=\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2}
\end{eqnarray}\]
So we get the two {rep} solutions:
\[\begin{eqnarray}
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{{abs(n2)}/{2*a*b}} \Rightarrow &x& = \simplify{({abs(n2)+n1}/{2*a*b})}\\
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{-({abs(n2)}/{2*a*b})} \Rightarrow &x& = \simplify{({n1-abs(n2)}/{2*a*b})}
\end{eqnarray}\]
Finding these roots then gives the factorisation as before.
"""
}
{
name: Question 7
variables: {a: random(2..5)
c1: "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
c: "c1*s3"
d1:"switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
d: "if((a*d1)^2=(b*c)^2, max(d1+1,random(1..5))*s3,d1*s3)"
s3:"random(1,-1)"
b:"random(1..4)"
f: "a*b"
s1: "random(1,-1)"
s2:"random(1,-1)"
n1: "b*c+a*d"
n2: "b*c-a*d"
n3: "2*a*b"
n5: "a*b"
n4: "abs(n2)"
disc: "(b*c+a*d)^2-4*a*b*c*d"
rdis:"switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')"
rep: "switch(disc=0,'repeated', ' ')"
}
statement: """Find the roots of the following quadratic equation."""
parts: [
{
type: GapFill
prompt:
"""\[q(x)=\simplify[1111110111111111]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}\]
The least root is $x=\;$ [[0]]. The greatest root is $x=\;$ [[1]]
You can get more information on solving a quadratic by clicking on Steps. You will lose 1 mark if you do so.
Enter the least root first. If the roots are equal, enter the root in both boxes. Enter the roots as fractions or integers, not as decimals.
"""
gaps: [
{type: jme
answer:"{n1-n4}/{2*a*b}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input numbers as fractions or integers not as a decimals}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 1}
{type: jme
answer:"{n1+n4}/{2*a*b}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input numbers as fractions or integers not as a decimals}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 1}
]
steps: [
{
type: information
prompt: """Finding the roots by factorisation,
Finding a factorisation of a quadratic $q(x)=a(x-r)(x-s)$ where $a$ is the coefficient of $x^2$ gives the roots $x=r$, $x=s$ immendiately.
If you cannot find a factorisation then there are several other methods you can use.
You can find the roots by using the formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
The two roots are
\[ x = \frac{-b +\sqrt{b^2-4ac}}{2a}\mbox{ and } x = \frac{-b -\sqrt{b^2-4ac}}{2a}\]
there are three main types of solutions depending upon the value of the discriminant $\Delta=b^2-4ac$
1. $\Delta >0$. The roots are real and distinct
2. $\Delta=0$. The roots are real and equal. Their value is $\frac{-b}{2a}$
3. $\Delta <0$. There are no real roots. The root are complex and form a complex conjugate pair.
"""
}
]
stepspenalty: 1
}
]
advice:
"""Direct Factorisation
If you can spot a direct factorisation then this is the quickest way to do this question.
For this example we have the factorisation
\[\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d} = ({a} * x + { -c}) * ({b} * x + { -d})}\]
Hence we find the roots:
\[\begin{eqnarray}
x&=& \simplify{{n1-n4}/{2*a*b}}\\
x&=& \simplify{{n1+n4}/{2*a*b}}
\end{eqnarray} \]
Other Methods.
There are several methods of finding the roots - here are the main methods.
Method 1: Finding the roots of a quadratic using the standard formula
We can use the following formula for finding the roots of a general quadratic equation $ax^2+bx+c=0$
The two roots are
\[ x = \frac{-b +\sqrt{b^2-4ac}}{2a}\mbox{ and } x = \frac{-b -\sqrt{b^2-4ac}}{2a}\]
there are three main types of solutions depending upon the value of the discriminant $\Delta=b^2-4ac$
1. $\Delta >0$. The roots are real and distinct
2. $\Delta=0$. The roots are real and equal. Their common value is $-\frac{b}{2a}$
3. $\Delta <0$. There are no real roots. The root are complex and form a complex conjugate pair.
For this question the discriminant of $\simplify{{a*b}x^2+{-b*c-a*d}x+{c*d}}$ is $\Delta = \simplify[1111110111111111]{{-n1}^2-4*{a*b*c*d}}=\var{disc}$
{rdis}.
So the {rep} roots are:
\[\begin{eqnarray}
x = \frac{\var{n1} - \sqrt{\var{disc}}}{\var{n3}} &=& \frac{\var{n1} - \var{n4} }{\var{n3}} &=& \simplify{{n1 - n4}/ {n3}}\\
x = \frac{\var{n1} + \sqrt{\var{disc}}}{\var{n3}} &=& \frac{\var{n1} + \var{n4} }{\var{n3}} &=& \simplify{{n1 + n4}/ {n3}}
\end{eqnarray}\]
Next Method: Completing the square.
First we complete the square for the quadratic expression $\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\[\begin{eqnarray}
\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\var{n5}\left(\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2+ \simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2 -\simplify{ {n2^2}/{4*(a*b)^2}}\right)
\end{eqnarray}
\]
So to solve $\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\[\begin{eqnarray}
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}& -\simplify{ {n2^2}/{4*(a*b)^2}}=0\Rightarrow\\
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}&=\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2}
\end{eqnarray}\]
So we get the two {rep} solutions:
\[\begin{eqnarray}
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{-{abs(n2)}/{2*a*b}} \Rightarrow &x& = \simplify{({-abs(n2)+n1}/{2*a*b})}\\
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{({abs(n2)}/{2*a*b})} \Rightarrow &x& = \simplify{({n1+abs(n2)}/{2*a*b})}
\end{eqnarray}\]
"""
}
{
name: Question 8
variables: {a: "s1*random(1.0..9.5#0.5)"
b:"random(1..20)-a^2"
s1: "random(1,-1)"
}
statement: """Put the following quadratic in the form $(x+a)^2+b$ for suitable numbers $a$ and $b$ .
Note that you have to input these numbers exactly as decimals or fractions."""
parts: [
{
type: GapFill
prompt: """$\simplify{x^2+{2*a}x+ {a^2+b}} = \phantom{{}}$ [[0]]. """
gaps: [
{type: jme
answer:"(x+{a})^2+{b}"
answersimplification: "1111111111111110"
notallowed:{strings:[x^2,x*x,x x,x),(x,( x,x(,x*(],message: """input in the form $(x+a)^2+b$"""}
musthave: {strings:[(,),^],message:"""input in the form $(x+a)^2+b$"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """Given the quadratic $\simplify{x^2+{2*a}x+ {a^2+b}}$ we complete the square by:
1. Halving the coefficient of $x$ gives $\var{a}$
2. Work out $\simplify[1111111111111110]{p(x)=(x+{a})^2=x^2+{2*a}x+{a^2}}$.
This gives the first two terms of $q(x)$.
3. But the constant term $\simplify[1111111111111110]{{a^2}}$ in $p(x)$ is not the same as in $q(x)$ - so we need to adjust by adding on a suitable constant to $p(x)$."""
}
]
stepspenalty: 1
}
]
advice:
"""Given the quadratic $\simplify{x^2+{2*a}x+ {a^2+b}}$ we complete the square by:
1. Halving the coefficient of $x$ gives $\var{a}$
2. Work out $\simplify[1111111111111110]{p(x)=(x+{a})^2=x^2+{2*a}x+{a^2}}$.
This gives the first two terms of $q(x)$.
3. But the constant term $\simplify[1111111111111110]{{a^2}}$ in $p(x)$ is not the same as in $q(x)$, so we need to adjust by adding on $\simplify[1111110111111110]{{a^2+b}-{a^2}={b}}$ to $p(x)$.
Hence we get \[q(x) = \simplify[1111111111111110]{p(x)+{b} = (x+{a})^2+{b}}=\simplify[1111111111111110]{ (x+{a})^2+{b}}\]
"""
}
{
name: Question 9
variables: {
a: random(2..5)
c1: "switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
c: "c1*s3"
d1:"switch(f=1, random(1..6),f=2,random(1,3,5,7,9),f=3,random(1,2,5,7,8),f=4,random(1,3,5,7,9),f=6, random(1,5,7,8),f=9,random(1,2,4,7,8),f=8,random(1,3,5,7,9),f=12,random(1,5,7),random(1,3,5,7))"
d: "if(d1=-b*c/a, max(d1+1,random(1..5))*s3,d1*s3)"
s3:"random(1,-1)"
b: "random(1..4)"
f: "a*b"
s1: "random(1,-1)"
s2:"random(1,-1)"
n1: "b*c+a*d"
n2: "b*c-a*d"
n3: "2*a*b"
n5: "a*b"
n4: "abs(n2)"
disc: "(b*c+a*d)^2-4*a*b*c*d"
rdis:"switch(disc=0,'The discriminant is '+ 0+' and so we get two repeated roots in this case.',disc<0, 'There are no real roots.','The roots exist and are distinct. ')"
rep: "switch(disc=0,'repeated', ' ')"
}
statement: """Complete the square for the quadratic expression $q(x)$ by writing it in the form \[a(x+b)^2+c\] for numbers $a,\;b$ and $c$
Using that find both roots of the equation $q(x)=0$"""
parts: [
{
type: GapFill
prompt:
"""\[q(x)=\simplify[1111110111111111]{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}\]
Now write $q(x) = a(x+b)^2+c\;\;$ for fractions or integers $a$, $b$, $c$.
$q(x)=\;$ [[0]]
You can get more information on completing the square by clicking on Steps. You will lose 1 mark if you do so.
Remember: Input all numbers as fractions or integers and not as decimals.
"""
gaps: [
{type: jme
answer:"{n5}(x+({-n1}/{2*n5}))^2-{n2^2}/{4*n5}"
answersimplification: "1111110111111111"
notallowed: {strings: [.,x*x, x x, x(, x (,)x,) x],message:"""write in the form $a(x+b)^2+c$ without using decimals"""}
musthave: {strings: [(,),^], message: """write in the form $a(x+b)^2+c$"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """Given the quadratic $\simplify{{a*b} * x ^ 2 + ( {-b*c-a * d}) * x + {c * d}}$ we complete the square by:
1. Writing the quadratic as \[\var{n5}\left(\simplify{x^2+({-n1}/{n5})x+ {c*d}/{n5}}\right)\]
2. Then complete the square for the quadratic \[\simplify{x^2+({-n1}/{n5})x+ {c*d}/{n5}}\]
3. Remember to multiply by {n5} the expression found from the second stage.
"""
}
]
stepspenalty: 1
}
{type: GapFill
prompt: """Now find the roots of the quadratic equation $\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$
The least root is $x=\;$ [[0]]. The greatest root is $x=\;$ [[1]]"""
gaps: [
{type: jme
answer:"{n1-n4}/{2*a*b}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input numbers as fractions or integers not as a decimals}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 1}
{type: jme
answer:"{n1+n4}/{2*a*b}"
answersimplification: "1111111111111111"
notallowed:{strings:[.],message: input numbers as fractions or integers not as a decimals}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 1}
]
}
]
advice:
"""Completing the square for the quadratic expression $\simplify{{a*b}x^2+{-n1}x+{c*d}}$
\[\begin{eqnarray}
\simplify{{a*b}x^2+{-n1}x+{c*d}}&=&\var{n5}\left(\simplify{x^2+({-n1}/{a*b})x+ {c*d}/{a*b}}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2+ \simplify{{c*d}/{a*b}-({-n1}/({2*a*b}))^2}\right)\\
&=&\var{n5}\left(\left(\simplify{x+({-n1}/{2*a*b})}\right)^2 -\simplify{ {n2^2}/{4*(a*b)^2}}\right)\\
&=&\var{n5}\left(\simplify{x+({-n1}/{2*n5})}\right)^2 -\simplify{ {n2^2}/{4*(n5)}}
\end{eqnarray}
\]
So to solve $\simplify{{a*b}x^2+{-n1}x+{c*d}}=0$ we have to solve:
\[\begin{eqnarray}
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}& -\simplify{ {n2^2}/{4*(a*b)^2}}=0\Rightarrow\\
\left(\simplify{x+({-n1}/{2*a*b})}\right)^2&\phantom{{}}&=\simplify{ {n2^2}/{4*(a*b)^2}=({abs(n2)}/{2*a*b})^2}
\end{eqnarray}\]
So we get the two {rep} solutions:
\[\begin{eqnarray}
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{{abs(n2)}/{2*a*b}} \Rightarrow &x& = \simplify{({abs(n2)+n1}/{2*a*b})}\\
\simplify{x+({-n1}/{2*a*b})}&=&\simplify{-({abs(n2)}/{2*a*b})} \Rightarrow &x& = \simplify{({n1-abs(n2)}/{2*a*b})}
\end{eqnarray}\]
"""
}
{
name: Question 10
variables: {a: "random(1..9)"
b:"s6*random(1..9)"
s6: "random(1,-1)"
c:"s1*random(1..9)"
s1: "random(1,-1)"
d: "if(b=d1,2*d1,d1)"
d1:"s2*random(1..6)"
s2: "random(1,-1)"
nb: "if(s1=-1,'taking away','adding')"
}
statement: """Add the following two fractions together and express as a single fraction over a common denominator.
All coefficients and constants should be input as integers and not as decimals.
Make sure that you simplify the numerator so that it is of the form $ax+b$ for suitable integers $a$ and $b$ .
"""
parts: [
{
type: GapFill
prompt: """Express \[\simplify{{a} / (x + {b}) + ({c} / (x + {d}))}\] as a single fraction here: [[0]]. """
gaps: [
{type: jme
answer:"({a + c} * x + {a * d + c * b}) / ((x + {b}) * (x + {d}))"
answersimplification: "1111111111111111"
notallowed:{strings:[)+,) +,) +,)-,) -,) -],message: """your answer should be one fraction. Try again"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{type: information
prompt:"""The formula for {nb} fractions is :
\[\simplify{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\]
and for this exercise we have $\simplify{b=x+{b}}$, $\simplify{d=x+{d}}$.
Note that in your answer you do not need to expand the denominator. """}
]
stepspenalty: 1
}
]
advice:
"""The formula for {nb} fractions is :
\[\simplify{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\]
and for this exercise we have $\simplify{b=x+{b}}$, $\simplify{d=x+{d}}$.
Hence we have:
\[\simplify{{a} / (x + {b}) + ({c} / (x + {d})) = ({a} * (x + {d}) + {c} * (x + {b})) / ((x + {b}) * (x + {d})) = ({a + c} * x + {a * d + c * b}) / ((x + {b}) * (x + {d}))}\]
"""
}
{
name: Question 11
variables: {
t: "random(2..8)"
a: "random(2..9)"
c: "s2*random(1..9)"
d: "abs(c)+random(2..9)"
s2:"random(1,-1)"
s1: "random(-1,1)"
b1:"s1*random(1..10)"
b: "if(a=abs(b1),abs(b1)+2,b1)"
an1:"t-b*d+b*c"
an2: "a*(d-c)"
}
statement: """Solve the following equation for $x$.
Input your answer as a fraction or an integer as appropriate and NOT as a decimal."""
parts: [
{
type: GapFill
prompt:
"""\[q(x)=\simplify{{t} / ({a} * x + {b}) + {c} = {d}}\]
$x=\;$ [[0]]
If you want help in solving the equation, click on Steps. If you do so then you will lose 1 mark and so the question will be marked out of 1 marks rather than 2 marks..
Remember: Input all numbers as fractions or integers and not as decimals.
"""
gaps: [
{type: jme
answer:"{an1}/{an2}"
answersimplification: "1111111111111111"
notallowed: {strings: [.],message:"""Input as a fraction or an integer, not as a decimal"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """Rearrange the equation by adding {-c} to both sides to get:
\[\simplify[1111110111111111]{{t} / ({a} * x + {b}) = {d} + { -c} = {d -c}}\]
This gives \[\simplify{({a} * x + {b}) / {t} = 1 / {d -c}}\] (this is because if $\frac{a}{b}=c$ then $\frac{b}{a}=\frac{1}{c}$ on turning the fraction round the other way)
and so \[\simplify{({a} * x + {b}) = {t} / {d -c}}\] on multiplying both sides by {t}.
Solve this equation for $x$.
"""
}
]
stepspenalty: 1
}
]
advice:
"""Rearrange the equation by adding {-c} to both sides to get:
\[\simplify{{t} / ({a} * x + {b}) = {d} + { -c} = {d -c}}\]
This gives \[\simplify{({a} * x + {b}) / {t} = 1 / {d -c}}\] (this is because if $\frac{a}{b}=c$ then $\frac{b}{a}=\frac{1}{c}$ on turning the fraction round the other way)
and so \[\simplify{({a} * x + {b}) = {t} / {d -c}}\] on multiplying both sides by {t}.
Hence \[\simplify{{a} * x = {t} / {d -c} -{b} = ({a * an1} / {an2})}\]
and so \[\simplify{x={an1}/{an2}}\] is the solution on dividing both sides by {a}.
"""
}
{
name: Question 12
variables: {
a: "random(2..5)"
c: "b-random(1..20)"
d: "random(1,2)"
b: "random(1..20)"
}
statement: """Solve the following equation for $x$.
Input your answer as a fraction or an integer as appropriate and NOT as a decimal."""
parts: [
{
type: GapFill
prompt:
"""\[\log_{\var{a}}(x+\var{b})- \log_{\var{a}}(\simplify{(x+{c})})=\var{d}\]
$x=\;$ [[0]]
If you want help in solving the equation, click on Steps. If you do so then you will lose 1 marks and so the question will be marked out of 1 marks rather than 2 marks..
Remember: Input all numbers as fractions or integers and not as decimals.
"""
gaps: [
{type: jme
answer:"{b-c*a^d}/{a^d-1}"
answersimplification: "1111111111111111"
notallowed: {strings: [.],message:"""Input as a fraction or an integer, not as a decimal"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """
Two rules for logs should be used:
1. $\log_a(b)-\log_a(c)=\log_a(b/c)$
2. $\log_a(p)=r \Rightarrow p=a^r$
So use 1. followed by 2. to get an equation for $x$.
"""
}
]
stepspenalty: 1
}
]
advice:
"""
We use the following two rules for logs :
1. $\log_a(b)-\log_a(c)=\log_a(b/c)$
2. $\log_a(p)=r \Rightarrow p=a^r$
Using 1. we get
\[\log_{\var{a}}(x+\var{b})- \log_{\var{a}}(\simplify{(x+{c})})=\log_{\var{a}}\left(\simplify{(x+{b})/(x+{c})}\right)\]
So the equation to solve becomes:
\[\log_{\var{a}}\left(\simplify{(x+{b})/(x+{c})}\right)=\var{d}\]
and using 2 this gives:
\[ \begin{eqnarray}
\simplify{(x+{b})/(x+{c})}&=&{\var{a}}^{\var{d}}\Rightarrow\\
x+\var{b}&=&{\var{a}}^{\var{d}}(x+\var{c})=\simplify{{a^d}}(x+\var{c})\Rightarrow\\
\simplify{{a^d-1}x}&=&\simplify[1111110111111111]{{b}-{c}*{a^d}={b-c*a^d}}\Rightarrow\\
x&=&\simplify{{b-c*a^d}/{a^d-1}}
\end{eqnarray}
\]
We should check that this solution gives positive values for $x+\var{b}$ and $\simplify{x+{c}}$ as otherwise the logs are not defined.
Substituting this value for $x$ into $\log_{\var{a}}(x+\var{b})$ we get $\log_{\var{a}}(\simplify{({b-c
}{a^d})/{a^d-1}})$ so OK.
For $\log_{\var{a}}(\simplify{x+{c}})$ we get on substituting for $x$, $\log_{\var{a}}(\simplify{({b-c
})/{a^d-1}})$ so OK.
Hence the value we found for $x$ is a solution to the original equation.
"""
}
{
name: Question 13
variables: {
a: "random(2,3)"
c: "b+2*a^(d)"
d: "random(1,2)"
b: "s*random(1..20)"
s: "random(1,-1)"
sol1: "c-2*b"
sol2: "-c+a^d"
}
statement: """Solve the following equation for $x$.
Input your answer as a fraction or an integer as appropriate and NOT as a decimal."""
parts: [
{
type: GapFill
prompt:
"""\[2\log_{\var{a}}(\simplify{x+{b}})- \log_{\var{a}}(\simplify{(x+{c})})=\var{d}\]
$x=\;$ [[0]]
If you want help in solving the equation, click on Steps. If you do so then you will lose 1 mark.
Remember: Input all numbers as fractions or integers and not as decimals.
"""
gaps: [
{type: jme
answer:"{sol1}"
answersimplification: "1111111111111111"
notallowed: {strings: [.],message:"""Input as an integer, not as a decimal"""}
checkingtype: absdiff
checkingaccuracy:0.0001
marks: 2}
]
steps: [
{
type: information
prompt: """
Three rules for logs should be used:
1. $n\log_a(m)=\log_a(m^n)$
2. $\log_a(b)-\log_a(c)=\log_a(b/c)$
3. $\log_a(p)=r \Rightarrow p=a^r$
So use 1. followed by 2. and 3. to get an equation for $x$.
"""
}
]
stepspenalty: 1
}
]
advice:
"""
We use the following three rules for logs :
1. $n\log_a(m)=\log_a(m^n)$
2. $\log_a(b)-\log_a(c)=\log_a(b/c)$
3. $\log_a(p)=r \Rightarrow p=a^r$
Using 1. we get
\[2\log_{\var{a}}(\simplify{x+{b}})- \log_{\var{a}}(\simplify{(x+{c})})=\log_{\var{a}}((\simplify{x+{b}})^2)- \log_{\var{a}}(\simplify{(x+{c})})\]
Using 2. gives
\[\log_{\var{a}}(\simplify{(x+{b})^2})- \log_{\var{a}}(\simplify{(x+{c})})=\log_{\var{a}}\left(\simplify{(x+{b})^2/(x+{c})}\right)\]
So the equation to solve becomes:
\[\log_{\var{a}}\left(\simplify{(x+{b})^2/(x+{c})}\right)=\var{d}\]
and using 3 this gives:
\[ \begin{eqnarray}
\simplify{(x+{b})^2/(x+{c})}&=&{\var{a}}^{\var{d}}\Rightarrow\\
\simplify{(x+{b})^2}&=&{\var{a}}^{\var{d}}(\simplify{x+{c}})=\simplify{{a^d}(x+{c})}\Rightarrow\\
\simplify{x^2+{2*b-a^(d)}x+{b^2-a^(d)*c}}&=&0
\end{eqnarray}
\]
Solving this quadratic we get two solutions:
$x=\var{sol1}$ and $x=\var{sol2}$
We should check that these solutions gives positive values for $\simplify{x+{b}}$ and $\simplify{x+{c}}$ as otherwise the logs are not defined.
The value $x=\var{sol1}$ gives
Substituting this value for $x$ into $\log_{\var{a}}(\simplify{x+{b}})$ we get $\log_{\var{a}}(\simplify{{2*a^d}})$ so OK.
Substituting this value for $x$ into $\log_{\var{a}}(\simplify{x+{c}})$ we get $\log_{\var{a}}(\simplify{{4*a^d}})$ so OK.
Hence $x=\var{sol1}$ is a solution to our original equation.
The value $x=\var{sol2}$ gives
Substituting this value for $x$ into $\log_{\var{a}}(\simplify{x+{b}})$ we get $\log_{\var{a}}(\simplify{{-a^d}})$ so NOT OK.
Substituting this value for $x$ into $\log_{\var{a}}(\simplify{x+{c}})$ we get $\log_{\var{a}}(\simplify{{a^d}})$ so OK.
Hence $x=\var{sol2}$ is NOT a solution to our original equation as $\log_{\var{a}}(\simplify{x+{b}})$ is not defined for this value of $x$.
So there is only one solution $x=\var{sol1}$.
"""
}
{
name: Question 14
statement: """
Find the equation of the straight line which has gradient $\simplify{{b-d}/{a-c}}$ and also passes through the point $(\var{a},\var{b})$.
Input your answer in the form $mx+c$ for suitable values of $m$ and $c$.
Input $m$ and $c$ as fractions or integers as appropriate and not as decimals.
You use the help given by Steps - you will not lose any marks.
"""
variables: {
a: "random(1,-1)*random(1..4)"
b1: "random(-9..9)"
b: "if(b1=d,b1+random(1..3),b1)"
c: "a+Random(1..4)*s1"
d: "random(-9..9)"
s1: "random(-1,1)"
f:"(b-d)/(a-c)"
g:"(b*c-a*d)/(c-a)"
}
parts: [
{
type: gapfill
prompt: """
$y=\;\phantom{{}}$[[0]]
"""
gaps: [
{ type: jme, answer: "({b-d}/{a-c})x+{b*c-a*d}/{c-a}", marks: 2,answersimplification: "1111110111111111" }
]
steps: [
{
type: information
prompt: """
The equation of the line is of the form $y=mx+c$.
You are given the gradient $m$ in and you can calculate the constant term by noting that $y=\var{b}$ when $x=\var{a}$.
"""
}
]
}
]
advice: """
The equation of the line is of the form $y=mx+c$.
You are given the gradient $m= \simplify{{b-d}/{a-c}}$ and we can calculate the constant term $c$ by noting that $y=\var{b}$ when $x=\var{a}$.
Using this we get:
\[
\begin{eqnarray}
\var{b}&=&\simplify[1111110111111111]{({f}){a}+c} \Rightarrow\\
c&=&\simplify[1111110111111111]{{b}-{f}{a}={g}}
\end{eqnarray}
\]
Hence the equation of the line is
\[y = \simplify[1111110111111111]{{f}x+{g}}\]
"""
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment