JavaScript AES client/server interoperability test
<!doctype html> | |
<html lang="en"> | |
<head> | |
<meta charset="utf-8"> | |
<title>AES client/server test</title> | |
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css"> | |
<style> | |
body { font-size: 80%; padding: 1em; } | |
form { margin-top: 2em; } | |
label { display: inline-block; width: 6em; } | |
input { width: 36em; } | |
form ul { list-style: none; padding: 0; } | |
form li { margin: 0.5em 1em; } | |
code { display: inline-block; font-size: 80%; margin-left: 2em; } | |
</style> | |
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script> | |
<script src="/js/aes.js"></script> | |
<script src="/js/aes-ctr.js"></script> | |
<script> | |
$(document).ready(function() { | |
var plaintext = Aes.Ctr.decrypt($('#ciphertext-server').html(), $('#password').val(), 256); | |
$('output[name=plaintext-local]').html(plaintext); | |
var ciphertext = Aes.Ctr.encrypt($('#plaintext').val(), $('#password').val(), 256); | |
$('input[name=ciphertext]').val(ciphertext); | |
}); | |
</script> | |
</head> | |
<body> | |
<h1>JavaScript AES client/server interoperability test</h1> | |
<p>The same AES JavaScript files are used both client-side and server-side.</p> | |
<p>Client-side they are accessed by</p> | |
<code><script src="/js/aes.js"></script><br><script src="/js/aes-ctr.js"></script></code> | |
<p>Server-side they are accessed by</p> | |
<code>const Aes = require('./public/js/aes.js');<br>Aes.Ctr = require('./public/js/aes-ctr.js');</code> | |
<form method="post"> | |
<fieldset><legend>Encrypt/decrypt</legend> | |
<ul> | |
<li> | |
<label for="plaintext">Plaintext</label> | |
<input name="plaintext" id="plaintext" value="pssst ... đon’t tell anyøne!"> | |
</li> | |
<li> | |
<label for="password">Password</label> | |
<input name="password" id="password" value="L0ck it up ŝaf3"> | |
</li> | |
</ul> | |
<h2>Encrypt on server, decrypt on client</h2> | |
<p>Cipher text (encrypted on server): <span id="ciphertext-server">{{ciphertext}}</span></p> | |
<p>Plain text (decrypted on client): <output name="plaintext-local"></output></p> | |
<h2>Encrypt on client, decrypt on server</h2> | |
<p>Cipher text (encrypted on client): <input name="ciphertext" readonly></p> | |
<p>Plain text (decrypted on server): <output name="plaintext-from-server">{{plaintext}}</output></p> | |
<button type="submit">Submit</button> | |
</fieldset> | |
</form> | |
</body> | |
</html> |
{ | |
"name": "aes-client-server", | |
"author": "Chris Veness", | |
"version": "0.0.0", | |
"main": "server.js", | |
"scripts": { | |
"start": "node server.js" | |
}, | |
"dependencies": { | |
"body-parser": "^1.15.0", | |
"connect": "^3.4.1", | |
"handlebars": "^4.0.5", | |
"serve-static": "^1.10.2" | |
} | |
} |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES Counter-mode implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* jshint node:true *//* global define, escape, unescape, btoa, atob */ | |
'use strict'; | |
if (typeof module!='undefined' && module.exports) var Aes = require('./aes'); // CommonJS (Node.js) | |
/** | |
* Aes.Ctr: Counter-mode (CTR) wrapper for AES. | |
* | |
* This encrypts a Unicode string to produces a base64 ciphertext using 128/192/256-bit AES, | |
* and the converse to decrypt an encrypted ciphertext. | |
* | |
* See http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf | |
* | |
* @augments Aes | |
*/ | |
Aes.Ctr = {}; | |
/** | |
* Encrypt a text using AES encryption in Counter mode of operation. | |
* | |
* Unicode multi-byte character safe | |
* | |
* @param {string} plaintext - Source text to be encrypted. | |
* @param {string} password - The password to use to generate a key for encryption. | |
* @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256. | |
* @returns {string} Encrypted text. | |
* | |
* @example | |
* var encr = Aes.Ctr.encrypt('big secret', 'pāşšŵōřđ', 256); // 'lwGl66VVwVObKIr6of8HVqJr' | |
*/ | |
Aes.Ctr.encrypt = function(plaintext, password, nBits) { | |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
plaintext = String(plaintext).utf8Encode(); | |
password = String(password).utf8Encode(); | |
// use AES itself to encrypt password to get cipher key (using plain password as source for key | |
// expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use) | |
var nBytes = nBits/8; // no bytes in key (16/24/32) | |
var pwBytes = new Array(nBytes); | |
for (var i=0; i<nBytes; i++) { // use 1st 16/24/32 chars of password for key | |
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); | |
} | |
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); // gives us 16-byte key | |
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long | |
// initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec, | |
// [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106 | |
var counterBlock = new Array(blockSize); | |
var nonce = (new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970 | |
var nonceMs = nonce%1000; | |
var nonceSec = Math.floor(nonce/1000); | |
var nonceRnd = Math.floor(Math.random()*0xffff); | |
// for debugging: nonce = nonceMs = nonceSec = nonceRnd = 0; | |
for (var i=0; i<2; i++) counterBlock[i] = (nonceMs >>> i*8) & 0xff; | |
for (var i=0; i<2; i++) counterBlock[i+2] = (nonceRnd >>> i*8) & 0xff; | |
for (var i=0; i<4; i++) counterBlock[i+4] = (nonceSec >>> i*8) & 0xff; | |
// and convert it to a string to go on the front of the ciphertext | |
var ctrTxt = ''; | |
for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); | |
// generate key schedule - an expansion of the key into distinct Key Rounds for each round | |
var keySchedule = Aes.keyExpansion(key); | |
var blockCount = Math.ceil(plaintext.length/blockSize); | |
var ciphertxt = new Array(blockCount); // ciphertext as array of strings | |
for (var b=0; b<blockCount; b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
// done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB) | |
for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; | |
for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8); | |
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // -- encrypt counter block -- | |
// block size is reduced on final block | |
var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; | |
var cipherChar = new Array(blockLength); | |
for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter char-by-char -- | |
cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b*blockSize+i); | |
cipherChar[i] = String.fromCharCode(cipherChar[i]); | |
} | |
ciphertxt[b] = cipherChar.join(''); | |
} | |
// use Array.join() for better performance than repeated string appends | |
var ciphertext = ctrTxt + ciphertxt.join(''); | |
ciphertext = ciphertext.base64Encode(); | |
return ciphertext; | |
}; | |
/** | |
* Decrypt a text encrypted by AES in counter mode of operation | |
* | |
* @param {string} ciphertext - Cipher text to be decrypted. | |
* @param {string} password - Password to use to generate a key for decryption. | |
* @param {number} nBits - Number of bits to be used in the key; 128 / 192 / 256. | |
* @returns {string} Decrypted text | |
* | |
* @example | |
* var decr = Aes.Ctr.decrypt('lwGl66VVwVObKIr6of8HVqJr', 'pāşšŵōřđ', 256); // 'big secret' | |
*/ | |
Aes.Ctr.decrypt = function(ciphertext, password, nBits) { | |
var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES | |
if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys | |
ciphertext = String(ciphertext).base64Decode(); | |
password = String(password).utf8Encode(); | |
// use AES to encrypt password (mirroring encrypt routine) | |
var nBytes = nBits/8; // no bytes in key | |
var pwBytes = new Array(nBytes); | |
for (var i=0; i<nBytes; i++) { | |
pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i); | |
} | |
var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); | |
key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long | |
// recover nonce from 1st 8 bytes of ciphertext | |
var counterBlock = new Array(8); | |
var ctrTxt = ciphertext.slice(0, 8); | |
for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); | |
// generate key schedule | |
var keySchedule = Aes.keyExpansion(key); | |
// separate ciphertext into blocks (skipping past initial 8 bytes) | |
var nBlocks = Math.ceil((ciphertext.length-8) / blockSize); | |
var ct = new Array(nBlocks); | |
for (var b=0; b<nBlocks; b++) ct[b] = ciphertext.slice(8+b*blockSize, 8+b*blockSize+blockSize); | |
ciphertext = ct; // ciphertext is now array of block-length strings | |
// plaintext will get generated block-by-block into array of block-length strings | |
var plaintxt = new Array(ciphertext.length); | |
for (var b=0; b<nBlocks; b++) { | |
// set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) | |
for (var c=0; c<4; c++) counterBlock[15-c] = ((b) >>> c*8) & 0xff; | |
for (var c=0; c<4; c++) counterBlock[15-c-4] = (((b+1)/0x100000000-1) >>> c*8) & 0xff; | |
var cipherCntr = Aes.cipher(counterBlock, keySchedule); // encrypt counter block | |
var plaintxtByte = new Array(ciphertext[b].length); | |
for (var i=0; i<ciphertext[b].length; i++) { | |
// -- xor plaintxt with ciphered counter byte-by-byte -- | |
plaintxtByte[i] = cipherCntr[i] ^ ciphertext[b].charCodeAt(i); | |
plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]); | |
} | |
plaintxt[b] = plaintxtByte.join(''); | |
} | |
// join array of blocks into single plaintext string | |
var plaintext = plaintxt.join(''); | |
plaintext = plaintext.utf8Decode(); // decode from UTF8 back to Unicode multi-byte chars | |
return plaintext; | |
}; | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* Extend String object with method to encode multi-byte string to utf8 | |
* - monsur.hossa.in/2012/07/20/utf-8-in-javascript.html | |
* - note utf8Encode is an identity function with 7-bit ascii strings, but not with 8-bit strings; | |
* - utf8Encode('x') = 'x', but utf8Encode('ça') = 'ça', and utf8Encode('ça') = 'ça'*/ | |
if (typeof String.prototype.utf8Encode == 'undefined') { | |
String.prototype.utf8Encode = function() { | |
return unescape( encodeURIComponent( this ) ); | |
}; | |
} | |
/* Extend String object with method to decode utf8 string to multi-byte */ | |
if (typeof String.prototype.utf8Decode == 'undefined') { | |
String.prototype.utf8Decode = function() { | |
try { | |
return decodeURIComponent( escape( this ) ); | |
} catch (e) { | |
return this; // invalid UTF-8? return as-is | |
} | |
}; | |
} | |
/* Extend String object with method to encode base64 | |
* - developer.mozilla.org/en-US/docs/Web/API/window.btoa, nodejs.org/api/buffer.html | |
* - note: btoa & Buffer/binary work on single-byte Unicode (C0/C1), so ok for utf8 strings, not for general Unicode... | |
* - note: if btoa()/atob() are not available (eg IE9-), try github.com/davidchambers/Base64.js */ | |
if (typeof String.prototype.base64Encode == 'undefined') { | |
String.prototype.base64Encode = function() { | |
if (typeof btoa != 'undefined') return btoa(this); // browser | |
if (typeof Buffer != 'undefined') return new Buffer(this, 'binary').toString('base64'); // Node.js | |
throw new Error('No Base64 Encode'); | |
}; | |
} | |
/* Extend String object with method to decode base64 */ | |
if (typeof String.prototype.base64Decode == 'undefined') { | |
String.prototype.base64Decode = function() { | |
if (typeof atob != 'undefined') return atob(this); // browser | |
if (typeof Buffer != 'undefined') return new Buffer(this, 'base64').toString('binary'); // Node.js | |
throw new Error('No Base64 Decode'); | |
}; | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
if (typeof module != 'undefined' && module.exports) module.exports = Aes.Ctr; // ≡ export default Aes.Ctr |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* AES implementation in JavaScript (c) Chris Veness 2005-2014 / MIT Licence */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* jshint node:true *//* global define */ | |
'use strict'; | |
/** | |
* AES (Rijndael cipher) encryption routines, | |
* | |
* Reference implementation of FIPS-197 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. | |
* | |
* @namespace | |
*/ | |
var Aes = {}; | |
/** | |
* AES Cipher function: encrypt 'input' state with Rijndael algorithm [§5.1]; | |
* applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage. | |
* | |
* @param {number[]} input - 16-byte (128-bit) input state array. | |
* @param {number[][]} w - Key schedule as 2D byte-array (Nr+1 x Nb bytes). | |
* @returns {number[]} Encrypted output state array. | |
*/ | |
Aes.cipher = function(input, w) { | |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] | |
for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; | |
state = Aes.addRoundKey(state, w, 0, Nb); | |
for (var round=1; round<Nr; round++) { | |
state = Aes.subBytes(state, Nb); | |
state = Aes.shiftRows(state, Nb); | |
state = Aes.mixColumns(state, Nb); | |
state = Aes.addRoundKey(state, w, round, Nb); | |
} | |
state = Aes.subBytes(state, Nb); | |
state = Aes.shiftRows(state, Nb); | |
state = Aes.addRoundKey(state, w, Nr, Nb); | |
var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] | |
for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; | |
return output; | |
}; | |
/** | |
* Perform key expansion to generate a key schedule from a cipher key [§5.2]. | |
* | |
* @param {number[]} key - Cipher key as 16/24/32-byte array. | |
* @returns {number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes). | |
*/ | |
Aes.keyExpansion = function(key) { | |
var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) | |
var Nk = key.length/4; // key length (in words): 4/6/8 for 128/192/256-bit keys | |
var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys | |
var w = new Array(Nb*(Nr+1)); | |
var temp = new Array(4); | |
// initialise first Nk words of expanded key with cipher key | |
for (var i=0; i<Nk; i++) { | |
var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; | |
w[i] = r; | |
} | |
// expand the key into the remainder of the schedule | |
for (var i=Nk; i<(Nb*(Nr+1)); i++) { | |
w[i] = new Array(4); | |
for (var t=0; t<4; t++) temp[t] = w[i-1][t]; | |
// each Nk'th word has extra transformation | |
if (i % Nk == 0) { | |
temp = Aes.subWord(Aes.rotWord(temp)); | |
for (var t=0; t<4; t++) temp[t] ^= Aes.rCon[i/Nk][t]; | |
} | |
// 256-bit key has subWord applied every 4th word | |
else if (Nk > 6 && i%Nk == 4) { | |
temp = Aes.subWord(temp); | |
} | |
// xor w[i] with w[i-1] and w[i-Nk] | |
for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; | |
} | |
return w; | |
}; | |
/** | |
* Apply SBox to state S [§5.1.1] | |
* @private | |
*/ | |
Aes.subBytes = function(s, Nb) { | |
for (var r=0; r<4; r++) { | |
for (var c=0; c<Nb; c++) s[r][c] = Aes.sBox[s[r][c]]; | |
} | |
return s; | |
}; | |
/** | |
* Shift row r of state S left by r bytes [§5.1.2] | |
* @private | |
*/ | |
Aes.shiftRows = function(s, Nb) { | |
var t = new Array(4); | |
for (var r=1; r<4; r++) { | |
for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy | |
for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back | |
} // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): | |
return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf | |
}; | |
/** | |
* Combine bytes of each col of state S [§5.1.3] | |
* @private | |
*/ | |
Aes.mixColumns = function(s, Nb) { | |
for (var c=0; c<4; c++) { | |
var a = new Array(4); // 'a' is a copy of the current column from 's' | |
var b = new Array(4); // 'b' is a•{02} in GF(2^8) | |
for (var i=0; i<4; i++) { | |
a[i] = s[i][c]; | |
b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; | |
} | |
// a[n] ^ b[n] is a•{03} in GF(2^8) | |
s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // {02}•a0 + {03}•a1 + a2 + a3 | |
s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 • {02}•a1 + {03}•a2 + a3 | |
s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + {02}•a2 + {03}•a3 | |
s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // {03}•a0 + a1 + a2 + {02}•a3 | |
} | |
return s; | |
}; | |
/** | |
* Xor Round Key into state S [§5.1.4] | |
* @private | |
*/ | |
Aes.addRoundKey = function(state, w, rnd, Nb) { | |
for (var r=0; r<4; r++) { | |
for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; | |
} | |
return state; | |
}; | |
/** | |
* Apply SBox to 4-byte word w | |
* @private | |
*/ | |
Aes.subWord = function(w) { | |
for (var i=0; i<4; i++) w[i] = Aes.sBox[w[i]]; | |
return w; | |
}; | |
/** | |
* Rotate 4-byte word w left by one byte | |
* @private | |
*/ | |
Aes.rotWord = function(w) { | |
var tmp = w[0]; | |
for (var i=0; i<3; i++) w[i] = w[i+1]; | |
w[3] = tmp; | |
return w; | |
}; | |
// sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1] | |
Aes.sBox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, | |
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, | |
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, | |
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, | |
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, | |
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, | |
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, | |
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, | |
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, | |
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, | |
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, | |
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, | |
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, | |
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, | |
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, | |
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; | |
// rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] | |
Aes.rCon = [ [0x00, 0x00, 0x00, 0x00], | |
[0x01, 0x00, 0x00, 0x00], | |
[0x02, 0x00, 0x00, 0x00], | |
[0x04, 0x00, 0x00, 0x00], | |
[0x08, 0x00, 0x00, 0x00], | |
[0x10, 0x00, 0x00, 0x00], | |
[0x20, 0x00, 0x00, 0x00], | |
[0x40, 0x00, 0x00, 0x00], | |
[0x80, 0x00, 0x00, 0x00], | |
[0x1b, 0x00, 0x00, 0x00], | |
[0x36, 0x00, 0x00, 0x00] ]; | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
if (typeof module != 'undefined' && module.exports) module.exports = Aes; // ≡ export default Aes |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* JavaScript AES client/server interoperability (c) Chris Veness 2016 / MIT Licence */ | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
'use strict'; | |
const fs = require('fs'); // nodejs.org/api/fs.html | |
const connect = require('connect'); // simple middleware framework | |
const serveStatic = require('serve-static'); // serve static files | |
const bodyParser = require('body-parser'); // http request body parsing | |
const handlebars = require('handlebars'); // handlebars templating | |
const AesCtr = require('./public/js/aes-ctr.js'); | |
const app = connect(); | |
app.use(serveStatic('public')); // for .js files | |
app.use(bodyParser.urlencoded({ 'extended': false })); // parse request bodies into req.body | |
app.use(function processRequest(req, res, next) { | |
let context = null; | |
switch (req.method) { | |
case 'GET': | |
context = { }; | |
break; | |
case 'POST': | |
const ciphertext = AesCtr.encrypt(req.body.plaintext, req.body.password, 256); | |
const plaintext = AesCtr.decrypt(req.body.ciphertext, req.body.password, 256); | |
context = { 'ciphertext': ciphertext, 'plaintext': plaintext }; | |
break; | |
} | |
const template = fs.readFileSync('index.html', 'utf-8'); | |
const templateFn = handlebars.compile(template); | |
const html = templateFn(context); | |
res.setHeader('Content-Type', 'text/html'); | |
res.end(html); | |
}); | |
app.listen(process.env.PORT||8080); | |
console.log('Listening on port '+(process.env.PORT||8080)); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment