Skip to content

Instantly share code, notes, and snippets.

@cia48621793
Created June 11, 2015 14:25
Show Gist options
  • Save cia48621793/894c41a48274ec54b431 to your computer and use it in GitHub Desktop.
Save cia48621793/894c41a48274ec54b431 to your computer and use it in GitHub Desktop.
ASE128 with managed wrapper
#include "aes.h"
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(void)
{
uint32_t i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for(i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for(; (i < (Nb * (Nr + 1))); ++i)
{
for(j = 0; j < 4; ++j)
tempa[j] = RoundKey[(i - 1) * 4 + j];
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
{
uint8_t i,j;
for(i = 0; i < 4; ++i)
for(j = 0; j < 4; ++j)
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
{
uint8_t i, j;
for(i = 0; i < 4; ++i)
for(j = 0; j < 4; ++j)
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
/*
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
*/
// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
{
uint8_t i;
uint8_t Tmp,Tm,t;
for(i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ;
Tm = xtime(Tm);
(*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ;
Tm = xtime(Tm);
(*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ;
Tm = xtime(Tm);
(*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ;
Tm = xtime(Tm);
(*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
#ifdef AES_MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
#endif
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
{
int i;
uint8_t a, b, c, d;
for(i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(void)
{
uint8_t i,j;
for(i = 0; i < 4; ++i)
for(j = 0; j < 4; ++j)
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
static void InvShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = 1; round < Nr; ++round)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
}
static void InvCipher(void)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = Nr - 1; round > 0; round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
}
static void BlockCopy(uint8_t* output, uint8_t* input)
{
uint8_t i;
for (i = 0; i < KEYLEN; ++i)
output[i] = input[i];
}
static void XorWithIv(uint8_t* buf)
{
uint8_t i;
for(i = 0; i < KEYLEN; ++i)
buf[i] ^= Iv[i];
}
void doPkcs7(uint8_t** input)
{
uint8_t* ptr;
int len, pad, newLen, i;
ptr = *input;
len = strlen((const char*)ptr);
pad = KEYLEN - (len % KEYLEN); // pad to next block
newLen = len + pad;
realloc(ptr, sizeof(uint8_t) * (newLen + 1));
//memset(ptr+len, pad, pad);
ptr[len+pad] = '\0';
//printf("%s", newInput);
*input = ptr;
}
void dePkcs7( uint8_t** input )
{
uint8_t* ptr;
int len, pos, i;
ptr = *input;
len = strlen((const char*)ptr);
pos = len - 1;
char cLast = ptr[pos];
if (cLast > KEYLEN || cLast == 0)
return;
// sanity check
for (i = pos; i > (pos - cLast); i--)
if (ptr[i] != cLast)
return;
int origLen = len - cLast;
realloc(ptr, sizeof(uint8_t) * (origLen+1));
ptr[origLen] = '\0';
*input = ptr;
}
#ifdef AES_ENABLE_ECB
void aes128_ecb_encrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key)
{
if (!output || !input || !key)
return;
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
// The KeyExpansion routine must be called before encryption.
Key = key;
KeyExpansion();
Cipher();
}
void aes128_ecb_decrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key)
{
if (!output || !input || !key)
return;
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
// The KeyExpansion routine must be called before encryption.
Key = key;
KeyExpansion();
InvCipher();
}
char* aes128_ebc_encrypt_managed(const char* input, const char* key)
{
int len, i;
if (strlen(key) % 16 != 0)
return NULL;
len = strlen(input);
if (len % 16 != 0)
{
uint8_t* ptr = (uint8_t*) input;
doPkcs7(&ptr);
input = (char*) ptr;
len = strlen(input);
}
uint8_t* buffer = (uint8_t*) malloc(len + 1);
for (i = 0; i < len + 1; i++)
buffer[i] = '\0';
aes128_ecb_encrypt(buffer, (uint8_t*)input, len, (uint8_t*)key );
buffer[len] = '\0';
return (char*)buffer;
}
char* aes128_ebc_decrypt_managed(const char* input, const char* key)
{
int len, messageLen, i;
len = strlen((const char*)input);
messageLen = len + KEYLEN - (len % KEYLEN) + 1;
uint8_t* buffer = (uint8_t*) malloc(messageLen + 1);
if (!buffer)
return NULL;
for (i = 0; i < messageLen; i++)
buffer[i] = '\0';
aes128_ecb_decrypt(buffer, (uint8_t*)input, len, (uint8_t*)key );
dePkcs7(&buffer);
buffer[messageLen] = 0;
return (char*) buffer;
}
#endif
#ifdef AES_ENABLE_CBC
void aes128_cbc_encrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key, const uint8_t* iv)
{
int i;
if (!output || !input || !key || !iv)
return;
BlockCopy(output, input);
state = (state_t*)output;
#ifdef AES_GENERATE_SBOX_AT_RUNTIME
if(!sbox || !rsbox)
aes128_generate_sbox();
#endif
// Skip the key expansion if key is passed as 0
if(key != NULL)
{
Key = key;
KeyExpansion();
}
if(iv != NULL)
Iv = (uint8_t*)iv;
for(i = 0; i < len; i += KEYLEN)
{
XorWithIv(input);
BlockCopy(output, input);
state = (state_t*)output;
Cipher();
Iv = output;
input += KEYLEN;
output += KEYLEN;
}
}
void aes128_cbc_decrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key, const uint8_t* iv)
{
int i;
if (!output || !input || !key || !iv)
return;
BlockCopy(output, input);
state = (state_t*)output;
#ifdef AES_GENERATE_SBOX_AT_RUNTIME
if(!sbox || !rsbox)
aes128_generate_sbox();
#endif
// Skip the key expansion if key is passed as 0
if(key != NULL)
{
Key = key;
KeyExpansion();
}
// If iv is passed as 0, we continue to encrypt without re-setting the Iv
if(iv != NULL)
Iv = (uint8_t*)iv;
for(i = 0; i < len; i += KEYLEN)
{
BlockCopy(output, input);
state = (state_t*)output;
InvCipher();
XorWithIv(output);
Iv = input;
input += KEYLEN;
output += KEYLEN;
}
}
char* aes128_cbc_encrypt_managed(const char* input, const char* key, const char* iv)
{
int len, i;
if (strlen(key) % 16 != 0 || strlen(iv) % 16 != 0)
return NULL;
len = strlen(input);
if (len % 16 != 0)
{
uint8_t* ptr = (uint8_t*) input;
doPkcs7(&ptr);
input = (char*) ptr;
len = strlen(input);
}
uint8_t* buffer = (uint8_t*) malloc(len + 1);
for (i = 0; i < len + 1; i++)
buffer[i] = '\0';
aes128_cbc_encrypt(buffer, (uint8_t*)input, len, (uint8_t*)key, (uint8_t*) iv );
buffer[len] = '\0';
return (char*)buffer;
}
char* aes128_cbc_decrypt_managed(const char* input, const char* key, const char* iv)
{
int len, messageLen, i;
len = strlen((const char*)input);
messageLen = len + KEYLEN - (len % KEYLEN) + 1;
uint8_t* buffer = (uint8_t*) malloc(messageLen + 1);
if (!buffer)
return NULL;
for (i = 0; i < messageLen; i++)
buffer[i] = '\0';
aes128_cbc_decrypt(buffer, (uint8_t*)input, len, (uint8_t*)key, (uint8_t*) iv );
dePkcs7(&buffer);
buffer[messageLen] = 0;
return (char*) buffer;
}
#endif
#ifdef AES_GENERATE_SBOX_AT_RUNTIME
void aes128_generate_sbox()
{
sbox = (uint8_t*) malloc(256);
rsbox = (uint8_t*) malloc(256);
uint32_t t[256], i;
uint32_t x;
for (i = 0, x = 1; i < 256; i ++)
{
t[i] = x;
x ^= (x << 1) ^ ((x >> 7) * 0x11B);
}
sbox[0] = 0x63;
for (i = 0; i < 255; i ++)
{
x = t[255 - i];
x |= x << 8;
x ^= (x >> 4) ^ (x >> 5) ^ (x >> 6) ^ (x >> 7);
sbox[t[i]] = (x ^ 0x63) & 0xFF;
}
for (i = 0; i < 256;i++)
{
rsbox[sbox[i]]=i;
}
}
#endif
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
#define AES_ENABLE_CBC
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
#ifdef AES_GENERATE_SBOX_AT_RUNTIME
static uint8_t* sbox;
static uint8_t* rsbox;
void aes128_generate_sbox();
#else
static const uint8_t sbox[256] =
{
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t rsbox[256] =
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
#endif
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8),
// note that i starts at 1, not 0).
static const uint8_t Rcon[255] =
{
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb
};
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of 32 bit words in a key.
#define Nk 4
// Key length in bytes [128 bit]
#define KEYLEN 16
// The number of rounds in AES Cipher.
#define Nr 10
#define getSBoxValue(num) sbox[num]
#define getSBoxInvert(num) rsbox[num]
#define xtime(x) ((x << 1) ^ (((x >> 7) & 1) * 0x1b))
// GF(2^8)
/// x^8 + x^4 + x^3 + x + 1
#ifdef AES_MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y);
#else
#define Multiply(x, y) \
((y >> 0 & 1) * x) ^ \
((y >> 1 & 1) * xtime(x)) ^ \
((y >> 2 & 1) * xtime(xtime(x))) ^ \
((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))) \
#endif
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
static state_t* state = NULL;
// The array that stores the round keys.
static uint8_t RoundKey[176] = {0};
// The Key input to the AES Program
static const uint8_t* Key = NULL;
static uint8_t* Iv = NULL;
#ifdef AES_ENABLE_ECB
void aes128_ecb_encrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key);
void aes128_ecb_decrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key);
char* aes128_ebc_encrypt_managed(const char* input, const char* key);
char* aes128_ebc_decrypt_managed(const char* input, const char* key);
#endif
#ifdef AES_ENABLE_CBC
void aes128_cbc_encrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key, const uint8_t* iv);
void aes128_cbc_decrypt(uint8_t* output, uint8_t* input, int len, const uint8_t* key, const uint8_t* iv);
char* aes128_cbc_encrypt_managed(const char* input, const char* key, const char* iv);
char* aes128_cbc_decrypt_managed(const char* input, const char* key, const char* iv);
#endif
#ifdef __cplusplus
}
#endif
#endif //_AES_H_
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment