Created
April 24, 2021 16:35
-
-
Save ckrapu/b3c74ca7b6971a8ef7c55f442e2f87f4 to your computer and use it in GitHub Desktop.
fixed-sampling-step
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pymc3 as pm | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import arviz as az | |
from pymc3.step_methods.arraystep import BlockedStep | |
b = [2,1.5] | |
sigma = 2 | |
n = 200 | |
x = np.linspace(start=-20,stop = 20, num = n) | |
y = b[0]*x+b[1] | |
y_obs = y + sigma*np.random.randn(n) | |
def my_sampler(mu=0,sigma=2): | |
b = np.random.normal(mu,sigma,2) | |
return b | |
class MySamplingStep(BlockedStep): | |
def __init__(self, var, mu, sigma): | |
self.vars = [var] | |
self.var = var | |
self.mu = mu | |
self.sigma = sigma | |
def step(self, point: dict): | |
new = point.copy() | |
new[self.var.name] = my_sampler(self.mu,self.sigma) | |
return new | |
mu = 0 | |
sigma = 2 | |
with pm.Model() as my_linear_model: | |
bm = pm.Normal("bm", mu=0, sigma=2,shape=2) | |
step_bm = MySamplingStep(bm, mu, sigma) | |
noise = pm.Gamma("noise", alpha=2, beta=1) | |
y_observed = pm.Normal("y_observed",mu=bm[0]*x+bm[1],sigma=noise,observed=y_obs) | |
posterior2 = pm.sample(step = [step_bm], chains=1, draws=3000, tune=1000,return_inferencedata=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment