Last active
February 6, 2016 19:18
-
-
Save claymcleod/2236a69050760db2a772 to your computer and use it in GitHub Desktop.
STD Loss for DNN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.layers.advanced_activations import Quorum | |
from keras.datasets import mnist | |
from keras.utils import np_utils | |
from keras.activations import relu | |
from keras.layers.advanced_activations import PReLU | |
from keras import backend as K | |
from keras.callbacks import Callback | |
def step(X): | |
return K.switch(X <= 0, 0, 1) | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28) | |
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
Y_train = np_utils.to_categorical(y_train, 10) | |
Y_test = np_utils.to_categorical(y_test, 10) | |
def pushstd(string): | |
sys.stdout.write(string) | |
sys.stdout.flush() | |
def get_activation_layer(name): | |
name = name.lower() | |
if name == "quorum": | |
return Quorum([step, relu]) | |
elif name == "relu": | |
return Activation('relu') | |
elif name == "prelu": | |
return PReLU() | |
else: | |
raise RuntimeError("Activation not known: {}".format(name)) | |
def get_new_model(activation_name): | |
model = Sequential() | |
model.add(Convolution2D(32, 3, 3, border_mode='valid', init='he_normal', input_shape=(1, 28, 28))) | |
model.add(get_activation_layer(activation_name)) | |
model.add(Convolution2D(32, 3, 3)) | |
model.add(get_activation_layer(activation_name)) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128, init='he_normal')) | |
model.add(get_activation_layer(activation_name)) | |
model.add(Dropout(0.5)) | |
model.add(Dense(10)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='sgd') | |
return model | |
def test_model(activation_name, nb_epoch): | |
model = get_new_model(activation_name) | |
hist = model.fit(X_train, Y_train, batch_size=128, nb_epoch=nb_epoch, | |
verbose=1, validation_data=(X_test, Y_test), show_accuracy=True) | |
return hist.history | |
import os | |
import cPickle | |
from collections import defaultdict | |
nb_epoch=50 | |
activations_to_try = ["quorum", "relu", "prelu"] | |
if os.path.exists("./results.pkl"): | |
results = cPickle.load(open("results.pkl")) | |
s = len(results[activations_to_try[0]+"-loss"]) | |
else: | |
results = defaultdict(list) | |
s = 0 | |
while True: | |
pushstd("-- Round {} --\n".format(s)) | |
for activation in activations_to_try: | |
pushstd("Processing {}...\n".format(activation)) | |
hist = test_model(activation, nb_epoch) | |
results[activation+'-loss'].append(hist['loss'][-1]) | |
results[activation+'-val_loss'].append(hist['val_loss'][-1]) | |
results[activation+'-acc'].append(hist['acc'][-1]) | |
results[activation+'-val_acc'].append(hist['val_acc'][-1]) | |
cPickle.dump(results, open("results.pkl", "wb")) | |
s=s+1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment