Last active
February 8, 2016 21:23
-
-
Save claymcleod/ad34f2be856e480e8f2a to your computer and use it in GitHub Desktop.
CIFAR100
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Setup | |
import os | |
import sys | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.layers.advanced_activations import Quorum | |
from keras.datasets import cifar100 | |
from keras.utils import np_utils | |
from keras import backend as K | |
from keras.activations import relu | |
from keras.callbacks import ModelCheckpoint | |
af = "pap" #pap, relu, thresh, notrain | |
init_fn = "he_normal" | |
def pushln(line): | |
sys.stdout.write(line) | |
sys.stdout.flush() | |
def step(X): | |
return K.switch(X <= 0, 0, 1) | |
def prepare_input_data(X_train, X_test): | |
X_train = X_train.astype('float32') / 255.0 | |
X_test = X_test.astype('float32') / 255.0 | |
return X_train, X_test | |
def prepare_output_data(y_train, y_test): | |
y_train = np_utils.to_categorical(y_train) | |
y_test = np_utils.to_categorical(y_test) | |
return y_train, y_test | |
def get_af(name): | |
af = name.lower() | |
if af == "relu": | |
return Activation('relu') | |
elif af == "pap": | |
return Quorum([relu, step]) | |
elif af == "thresh": | |
return Quorum([relu, step], threshold=0.5) | |
elif af == "notrain": | |
return Quorum([relu, step], trainable=False) | |
else: | |
raise RuntimeError("Unrecognized activation function: {}".format(name)) | |
def add_convolutional_layers(model, activation_name, n, filter_size, window, | |
dropout=0.25, stack_finished=True, input_shape=None): | |
if input_shape: | |
model.add(Convolution2D(filter_size, window, window, border_mode="same", | |
init=init_fn, input_shape=input_shape)) | |
model.add(get_af(af)) | |
n=n-1 | |
for i in range(n): | |
model.add(Convolution2D(filter_size, window, window, border_mode="same", init=init_fn)) | |
model.add(get_af(activation_name)) | |
if stack_finished: | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(dropout)) | |
# Script | |
(X_train, y_train), (X_test, y_test) = cifar100.load_data() | |
X_train, X_test = prepare_input_data(X_train, X_test) | |
y_train, y_test = prepare_output_data(y_train, y_test) | |
model = Sequential() | |
# 2 x 32 x 3 | |
add_convolutional_layers(model, af, 2, 32, 3, input_shape=(3, 32, 32)) | |
# 2 x 64 x 3 | |
add_convolutional_layers(model, af, 2, 64, 3) | |
# 1 x 100 x FC | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(512)) | |
model.add(get_af(af)) | |
model.add(Dropout(0.5)) | |
model.add(Dense(100)) | |
model.add(Activation('softmax')) | |
pushln("Compiling model...") | |
model.compile(loss='categorical_crossentropy', optimizer='sgd') | |
pushln("finished.\n") | |
datagen = ImageDataGenerator( | |
featurewise_center=False, # set input mean to 0 over the dataset | |
samplewise_center=False, # set each sample mean to 0 | |
featurewise_std_normalization=False, # divide inputs by std of the dataset | |
samplewise_std_normalization=False, # divide each input by its std | |
zca_whitening=True, # apply ZCA whitening | |
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) | |
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) | |
height_shift_range=0.1, # randomly shift images vertically (fraction of total height) | |
horizontal_flip=True, # randomly flip images | |
vertical_flip=False) # randomly flip images | |
pushln("Fitting ImageDataGenerator...") | |
datagen.fit(X_train) | |
pushln("finished...\n") | |
mc = ModelCheckpoint("weights_"+af, verbose=1) | |
pushln("Beginning training...\n") | |
hist = model.fit_generator(datagen.flow(X_train, y_train, batch_size=128), verbose=1, | |
samples_per_epoch=X_train.shape[0], | |
nb_epoch=200, show_accuracy=True, | |
validation_data=(X_test, y_test), | |
nb_worker=1, callbacks=[mc]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment