Created
October 19, 2015 22:46
-
-
Save clemtaylor/26da578862ffe083bf72 to your computer and use it in GitHub Desktop.
app_timer with PPI/TIMER based overflow counter
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. | |
* | |
* The information contained herein is property of Nordic Semiconductor ASA. | |
* Terms and conditions of usage are described in detail in NORDIC | |
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. | |
* | |
* Licensees are granted free, non-transferable use of the information. NO | |
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from | |
* the file. | |
* | |
*/ | |
#include "app_timer.h" | |
#include <stdlib.h> | |
#include "nrf51.h" | |
#include "nrf51_bitfields.h" | |
#include "nrf_soc.h" | |
#include "app_error.h" | |
#include "nrf_delay.h" | |
#include "app_util.h" | |
#include "app_util_platform.h" | |
#define RTC1_IRQ_PRI APP_IRQ_PRIORITY_LOW /**< Priority of the RTC1 interrupt (used for checking for timeouts and executing timeout handlers). */ | |
#define SWI0_IRQ_PRI APP_IRQ_PRIORITY_LOW /**< Priority of the SWI0 interrupt (used for updating the timer list). */ | |
// The current design assumes that both interrupt handlers run at the same interrupt level. | |
// If this is to be changed, protection must be added to prevent them from interrupting each other | |
// (e.g. by using guard/trigger flags). | |
STATIC_ASSERT(RTC1_IRQ_PRI == SWI0_IRQ_PRI); | |
#define MAX_RTC_COUNTER_VAL 0x00FFFFFF /**< Maximum value of the RTC counter. */ | |
#define APP_HIGH_USER_ID 0 /**< User Id for the Application High "user". */ | |
#define APP_LOW_USER_ID 1 /**< User Id for the Application Low "user". */ | |
#define THREAD_MODE_USER_ID 2 /**< User Id for the Thread Mode "user". */ | |
#define RTC_COMPARE_OFFSET_MIN 3 /**< Minimum offset between the current RTC counter value and the Capture Compare register. Although the nRF51 Series User Specification recommends this value to be 2, we use 3 to be safer.*/ | |
#define MAX_RTC_TASKS_DELAY 47 /**< Maximum delay until an RTC task is executed. */ | |
/**@brief Timer allocation state type. */ | |
typedef enum | |
{ | |
STATE_FREE, /**< The timer node is available. */ | |
STATE_ALLOCATED /**< The timer node has been allocated. */ | |
} timer_alloc_state_t; | |
/**@brief Timer node type. The nodes will be used form a linked list of running timers. */ | |
typedef struct | |
{ | |
timer_alloc_state_t state; /**< Timer allocation state. */ | |
app_timer_mode_t mode; /**< Timer mode. */ | |
bool is_running; /**< True if timer is running, False otherwise. */ | |
uint32_t ticks_to_expire; /**< Number of ticks from previous timer interrupt to timer expiry. */ | |
uint32_t ticks_at_start; /**< Current RTC counter value when the timer was started. */ | |
uint32_t ticks_first_interval; /**< Number of ticks in the first timer interval. */ | |
uint32_t ticks_periodic_interval; /**< Timer period (for repeating timers). */ | |
app_timer_timeout_handler_t p_timeout_handler; /**< Pointer to function to be executed when the timer expires. */ | |
void * p_context; /**< General purpose pointer. Will be passed to the timeout handler when the timer expires. */ | |
app_timer_id_t next; /**< Id of next timer in list of running timers. */ | |
} timer_node_t; | |
STATIC_ASSERT(sizeof(timer_node_t) <= APP_TIMER_NODE_SIZE); | |
STATIC_ASSERT(sizeof(timer_node_t) % 4 == 0); | |
/**@brief Set of available timer operation types. */ | |
typedef enum | |
{ | |
TIMER_USER_OP_TYPE_NONE, /**< Invalid timer operation type. */ | |
TIMER_USER_OP_TYPE_START, /**< Timer operation type Start. */ | |
TIMER_USER_OP_TYPE_STOP, /**< Timer operation type Stop. */ | |
TIMER_USER_OP_TYPE_STOP_ALL /**< Timer operation type Stop All. */ | |
} timer_user_op_type_t; | |
/**@brief Structure describing a timer start operation. */ | |
typedef struct | |
{ | |
uint32_t ticks_at_start; /**< Current RTC counter value when the timer was started. */ | |
uint32_t ticks_first_interval; /**< Number of ticks in the first timer interval. */ | |
uint32_t ticks_periodic_interval; /**< Timer period (for repeating timers). */ | |
void * p_context; /**< General purpose pointer. Will be passed to the timeout handler when the timer expires. */ | |
} timer_user_op_start_t; | |
/**@brief Structure describing a timer operation. */ | |
typedef struct | |
{ | |
timer_user_op_type_t op_type; /**< Timer operation type. */ | |
app_timer_id_t timer_id; /**< Id of timer on which the operation is to be performed. */ | |
union | |
{ | |
timer_user_op_start_t start; /**< Structure describing a timer start operation. */ | |
} params; | |
} timer_user_op_t; | |
STATIC_ASSERT(sizeof(timer_user_op_t) <= APP_TIMER_USER_OP_SIZE); | |
STATIC_ASSERT(sizeof(timer_user_op_t) % 4 == 0); | |
/**@brief Structure describing a timer user. | |
* | |
* @details For each user of the timer module, there will be a timer operations queue. This queue | |
* will hold timer operations issued by this user until the timer interrupt handler | |
* processes these operations. For the current implementation, there will be one user for | |
* each interrupt level available to the application (APP_HIGH, APP_LOW and THREAD_MODE), | |
* but the module can easily be modified to e.g. have one queue per process when using an | |
* RTOS. The purpose of the queues is to be able to have a completely lockless timer | |
* implementation. | |
*/ | |
typedef struct | |
{ | |
uint8_t first; /**< Index of first entry to have been inserted in the queue (i.e. the next entry to be executed). */ | |
uint8_t last; /**< Index of last entry to have been inserted in the queue. */ | |
uint8_t user_op_queue_size; /**< Queue size. */ | |
timer_user_op_t * p_user_op_queue; /**< Queue buffer. */ | |
} timer_user_t; | |
STATIC_ASSERT(sizeof(timer_user_t) == APP_TIMER_USER_SIZE); | |
STATIC_ASSERT(sizeof(timer_user_t) % 4 == 0); | |
/**@brief User id type. | |
* | |
* @details In the current implementation, this will automatically be generated from the current | |
* interrupt level. | |
*/ | |
typedef uint32_t timer_user_id_t; | |
#define TIMER_NULL ((app_timer_id_t)(0 - 1)) /**< Invalid timer id. */ | |
#define CONTEXT_QUEUE_SIZE_MAX (2) /**< Timer internal elapsed ticks queue size. */ | |
static uint8_t m_node_array_size; /**< Size of timer node array. */ | |
static timer_node_t * mp_nodes = NULL; /**< Array of timer nodes. */ | |
static uint8_t m_user_array_size; /**< Size of timer user array. */ | |
static timer_user_t * mp_users; /**< Array of timer users. */ | |
static app_timer_id_t m_timer_id_head; /**< First timer in list of running timers. */ | |
static uint32_t m_ticks_latest; /**< Last known RTC counter value. */ | |
static uint32_t m_ticks_elapsed[CONTEXT_QUEUE_SIZE_MAX]; /**< Timer internal elapsed ticks queue. */ | |
static uint8_t m_ticks_elapsed_q_read_ind; /**< Timer internal elapsed ticks queue read index. */ | |
static uint8_t m_ticks_elapsed_q_write_ind; /**< Timer internal elapsed ticks queue write index. */ | |
static app_timer_evt_schedule_func_t m_evt_schedule_func; /**< Pointer to function for propagating timeout events to the scheduler. */ | |
static bool m_rtc1_running; /**< Boolean indicating if RTC1 is running. */ | |
static bool m_rtc1_reset; /**< Boolean indicating if RTC1 counter has been reset due to last timer removed from timer list during the timer list handling. */ | |
/**@brief Function for initializing the RTC1 counter. | |
* | |
* @param[in] prescaler Value of the RTC1 PRESCALER register. Set to 0 for no prescaling. | |
*/ | |
static void rtc1_init(uint32_t prescaler) | |
{ | |
NRF_RTC1->PRESCALER = prescaler; | |
NVIC_SetPriority(RTC1_IRQn, RTC1_IRQ_PRI); | |
} | |
/**@brief Function for starting the RTC1 timer. | |
*/ | |
static void rtc1_start(void) | |
{ | |
NRF_RTC1->EVTENSET = RTC_EVTEN_COMPARE0_Msk | RTC_EVTEN_OVRFLW_Msk; | |
NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE0_Msk; | |
NVIC_ClearPendingIRQ(RTC1_IRQn); | |
NVIC_EnableIRQ(RTC1_IRQn); | |
NRF_RTC1->TASKS_START = 1; | |
nrf_delay_us(MAX_RTC_TASKS_DELAY); | |
m_rtc1_running = true; | |
} | |
/**@brief Function for stopping the RTC1 timer. | |
*/ | |
static void rtc1_stop(void) | |
{ | |
NVIC_DisableIRQ(RTC1_IRQn); | |
NRF_RTC1->EVTENCLR = -1; // clear everything | |
NRF_RTC1->INTENCLR = -1; // clear everything | |
NRF_RTC1->TASKS_STOP = 1; | |
nrf_delay_us(MAX_RTC_TASKS_DELAY); | |
NRF_RTC1->TASKS_CLEAR = 1; | |
m_ticks_latest = 0; | |
nrf_delay_us(MAX_RTC_TASKS_DELAY); | |
m_rtc1_running = false; | |
} | |
/**@brief Function for returning the current value of the RTC1 counter. | |
* | |
* @return Current value of the RTC1 counter. | |
*/ | |
static __INLINE uint32_t rtc1_counter_get(void) | |
{ | |
return NRF_RTC1->COUNTER; | |
} | |
/**@brief Function for computing the difference between two RTC1 counter values. | |
* | |
* @return Number of ticks elapsed from ticks_old to ticks_now. | |
*/ | |
static __INLINE uint32_t ticks_diff_get(uint32_t ticks_now, uint32_t ticks_old) | |
{ | |
return ((ticks_now - ticks_old) & MAX_RTC_COUNTER_VAL); | |
} | |
/**@brief Function for setting the RTC1 Capture Compare register 0, and enabling the corresponding | |
* event. | |
* | |
* @param[in] value New value of Capture Compare register 0. | |
*/ | |
static __INLINE void rtc1_compare0_set(uint32_t value) | |
{ | |
NRF_RTC1->CC[0] = value; | |
} | |
/**@brief Function for inserting a timer in the timer list. | |
* | |
* @param[in] timer_id Id of timer to insert. | |
*/ | |
static void timer_list_insert(app_timer_id_t timer_id) | |
{ | |
timer_node_t * p_timer = &mp_nodes[timer_id]; | |
if (m_timer_id_head == TIMER_NULL) | |
{ | |
m_timer_id_head = timer_id; | |
} | |
else | |
{ | |
if (p_timer->ticks_to_expire <= mp_nodes[m_timer_id_head].ticks_to_expire) | |
{ | |
mp_nodes[m_timer_id_head].ticks_to_expire -= p_timer->ticks_to_expire; | |
p_timer->next = m_timer_id_head; | |
m_timer_id_head = timer_id; | |
} | |
else | |
{ | |
app_timer_id_t previous; | |
app_timer_id_t current; | |
uint32_t ticks_to_expire; | |
ticks_to_expire = p_timer->ticks_to_expire; | |
previous = m_timer_id_head; | |
current = m_timer_id_head; | |
while ((current != TIMER_NULL) && (ticks_to_expire > mp_nodes[current].ticks_to_expire)) | |
{ | |
ticks_to_expire -= mp_nodes[current].ticks_to_expire; | |
previous = current; | |
current = mp_nodes[current].next; | |
} | |
if (current != TIMER_NULL) | |
{ | |
mp_nodes[current].ticks_to_expire -= ticks_to_expire; | |
} | |
p_timer->ticks_to_expire = ticks_to_expire; | |
p_timer->next = current; | |
mp_nodes[previous].next = timer_id; | |
} | |
} | |
} | |
/**@brief Function for removing a timer from the timer queue. | |
* | |
* @param[in] timer_id Id of timer to remove. | |
*/ | |
static void timer_list_remove(app_timer_id_t timer_id) | |
{ | |
app_timer_id_t previous; | |
app_timer_id_t current; | |
uint32_t timeout; | |
// Find the timer's position in timer list. | |
previous = m_timer_id_head; | |
current = previous; | |
while (current != TIMER_NULL) | |
{ | |
if (current == timer_id) | |
{ | |
break; | |
} | |
previous = current; | |
current = mp_nodes[current].next; | |
} | |
// Timer not in active list. | |
if (current == TIMER_NULL) | |
{ | |
return; | |
} | |
// Timer is the first in the list | |
if (previous == current) | |
{ | |
m_timer_id_head = mp_nodes[m_timer_id_head].next; | |
// No more timers in the list. Reset RTC1 in case Start timer operations are present in the queue. | |
if (m_timer_id_head == TIMER_NULL) | |
{ | |
NRF_RTC1->TASKS_CLEAR = 1; | |
m_ticks_latest = 0; | |
m_rtc1_reset = true; | |
} | |
} | |
// Remaining timeout between next timeout. | |
timeout = mp_nodes[current].ticks_to_expire; | |
// Link previous timer with next of this timer, i.e. removing the timer from list. | |
mp_nodes[previous].next = mp_nodes[current].next; | |
// If this is not the last timer, increment the next timer by this timer timeout. | |
current = mp_nodes[previous].next; | |
if (current != TIMER_NULL) | |
{ | |
mp_nodes[current].ticks_to_expire += timeout; | |
} | |
} | |
/**@brief Function for scheduling a check for timeouts by generating a RTC1 interrupt. | |
*/ | |
static void timer_timeouts_check_sched(void) | |
{ | |
NVIC_SetPendingIRQ(RTC1_IRQn); | |
} | |
/**@brief Function for scheduling a timer list update by generating a SWI0 interrupt. | |
*/ | |
static void timer_list_handler_sched(void) | |
{ | |
NVIC_SetPendingIRQ(SWI0_IRQn); | |
} | |
/**@brief Function for executing an application timeout handler, either by calling it directly, or | |
* by passing an event to the @ref app_scheduler. | |
* | |
* @param[in] p_timer Pointer to expired timer. | |
*/ | |
static void timeout_handler_exec(timer_node_t * p_timer) | |
{ | |
if (m_evt_schedule_func != NULL) | |
{ | |
uint32_t err_code = m_evt_schedule_func(p_timer->p_timeout_handler, p_timer->p_context); | |
APP_ERROR_CHECK(err_code); | |
} | |
else | |
{ | |
p_timer->p_timeout_handler(p_timer->p_context); | |
} | |
} | |
/**@brief Function for checking for expired timers. | |
*/ | |
static void timer_timeouts_check(void) | |
{ | |
// Handle expired of timer | |
if (m_timer_id_head != TIMER_NULL) | |
{ | |
app_timer_id_t timer_id; | |
uint32_t ticks_elapsed; | |
uint32_t ticks_expired; | |
// Initialize actual elapsed ticks being consumed to 0. | |
ticks_expired = 0; | |
// ticks_elapsed is collected here, job will use it. | |
ticks_elapsed = ticks_diff_get(rtc1_counter_get(), m_ticks_latest); | |
// Auto variable containing the head of timers expiring. | |
timer_id = m_timer_id_head; | |
// Expire all timers within ticks_elapsed and collect ticks_expired. | |
while (timer_id != TIMER_NULL) | |
{ | |
timer_node_t * p_timer; | |
// Auto variable for current timer node | |
p_timer = &mp_nodes[timer_id]; | |
// Do nothing if timer did not expire. | |
if (ticks_elapsed < p_timer->ticks_to_expire) | |
{ | |
break; | |
} | |
// Decrement ticks_elapsed and collect expired ticks. | |
ticks_elapsed -= p_timer->ticks_to_expire; | |
ticks_expired += p_timer->ticks_to_expire; | |
// Move to next timer. | |
timer_id = p_timer->next; | |
// Execute Task. | |
timeout_handler_exec(p_timer); | |
} | |
// Prepare to queue the ticks expired in the m_ticks_elapsed queue. | |
if (m_ticks_elapsed_q_read_ind == m_ticks_elapsed_q_write_ind) | |
{ | |
// The read index of the queue is equal to the write index. This means the new | |
// value of ticks_expired should be stored at a new location in the m_ticks_elapsed | |
// queue (which is implemented as a double buffer). | |
// Check if there will be a queue overflow. | |
if (++m_ticks_elapsed_q_write_ind == CONTEXT_QUEUE_SIZE_MAX) | |
{ | |
// There will be a queue overflow. Hence the write index should point to the start | |
// of the queue. | |
m_ticks_elapsed_q_write_ind = 0; | |
} | |
} | |
// Queue the ticks expired. | |
m_ticks_elapsed[m_ticks_elapsed_q_write_ind] = ticks_expired; | |
timer_list_handler_sched(); | |
} | |
} | |
/**@brief Function for acquiring the number of ticks elapsed. | |
* | |
* @param[out] p_ticks_elapsed Number of ticks elapsed. | |
* | |
* @return TRUE if elapsed ticks was read from queue, FALSE otherwise. | |
*/ | |
static bool elapsed_ticks_acquire(uint32_t * p_ticks_elapsed) | |
{ | |
// Pick the elapsed value from queue. | |
if (m_ticks_elapsed_q_read_ind != m_ticks_elapsed_q_write_ind) | |
{ | |
// Dequeue elapsed value. | |
m_ticks_elapsed_q_read_ind++; | |
if (m_ticks_elapsed_q_read_ind == CONTEXT_QUEUE_SIZE_MAX) | |
{ | |
m_ticks_elapsed_q_read_ind = 0; | |
} | |
*p_ticks_elapsed = m_ticks_elapsed[m_ticks_elapsed_q_read_ind]; | |
m_ticks_latest += *p_ticks_elapsed; | |
m_ticks_latest &= MAX_RTC_COUNTER_VAL; | |
return true; | |
} | |
else | |
{ | |
// No elapsed value in queue. | |
*p_ticks_elapsed = 0; | |
return false; | |
} | |
} | |
/**@brief Function for handling the timer list deletions. | |
* | |
* @return TRUE if Capture Compare register must be updated, FALSE otherwise. | |
*/ | |
static bool list_deletions_handler(void) | |
{ | |
app_timer_id_t timer_id_old_head; | |
uint8_t user_id; | |
// Remember the old head, so as to decide if new compare needs to be set. | |
timer_id_old_head = m_timer_id_head; | |
user_id = m_user_array_size; | |
while (user_id--) | |
{ | |
timer_user_t * p_user = &mp_users[user_id]; | |
uint8_t user_ops_first = p_user->first; | |
while (user_ops_first != p_user->last) | |
{ | |
timer_node_t * p_timer; | |
timer_user_op_t * p_user_op = &p_user->p_user_op_queue[user_ops_first]; | |
// Traverse to next operation in queue. | |
user_ops_first++; | |
if (user_ops_first == p_user->user_op_queue_size) | |
{ | |
user_ops_first = 0; | |
} | |
switch (p_user_op->op_type) | |
{ | |
case TIMER_USER_OP_TYPE_STOP: | |
// Delete node if timer is running. | |
p_timer = &mp_nodes[p_user_op->timer_id]; | |
if (p_timer->is_running) | |
{ | |
timer_list_remove(p_user_op->timer_id); | |
p_timer->is_running = false; | |
} | |
break; | |
case TIMER_USER_OP_TYPE_STOP_ALL: | |
// Delete list of running timers, and mark all timers as not running. | |
while (m_timer_id_head != TIMER_NULL) | |
{ | |
timer_node_t * p_head = &mp_nodes[m_timer_id_head]; | |
p_head->is_running = false; | |
m_timer_id_head = p_head->next; | |
} | |
break; | |
default: | |
// No implementation needed. | |
break; | |
} | |
} | |
} | |
// Detect change in head of the list. | |
return (m_timer_id_head != timer_id_old_head); | |
} | |
/**@brief Function for updating the timer list for expired timers. | |
* | |
* @param[in] ticks_elapsed Number of elapsed ticks. | |
* @param[in] ticks_previous Previous known value of the RTC counter. | |
* @param[out] p_restart_list_head List of repeating timers to be restarted. | |
*/ | |
static void expired_timers_handler(uint32_t ticks_elapsed, | |
uint32_t ticks_previous, | |
app_timer_id_t * p_restart_list_head) | |
{ | |
uint32_t ticks_expired = 0; | |
while (m_timer_id_head != TIMER_NULL) | |
{ | |
timer_node_t * p_timer; | |
app_timer_id_t id_expired; | |
// Auto variable for current timer node. | |
p_timer = &mp_nodes[m_timer_id_head]; | |
// Do nothing if timer did not expire | |
if (ticks_elapsed < p_timer->ticks_to_expire) | |
{ | |
p_timer->ticks_to_expire -= ticks_elapsed; | |
break; | |
} | |
// Decrement ticks_elapsed and collect expired ticks. | |
ticks_elapsed -= p_timer->ticks_to_expire; | |
ticks_expired += p_timer->ticks_to_expire; | |
// Timer expired, set ticks_to_expire zero. | |
p_timer->ticks_to_expire = 0; | |
p_timer->is_running = false; | |
// Remove the expired timer from head. | |
id_expired = m_timer_id_head; | |
m_timer_id_head = p_timer->next; | |
// Timer will be restarted if periodic. | |
if (p_timer->ticks_periodic_interval != 0) | |
{ | |
p_timer->ticks_at_start = (ticks_previous + ticks_expired) & MAX_RTC_COUNTER_VAL; | |
p_timer->ticks_first_interval = p_timer->ticks_periodic_interval; | |
p_timer->next = *p_restart_list_head; | |
*p_restart_list_head = id_expired; | |
} | |
} | |
} | |
/**@brief Function for handling timer list insertions. | |
* | |
* @param[in] p_restart_list_head List of repeating timers to be restarted. | |
* | |
* @return TRUE if Capture Compare register must be updated, FALSE otherwise. | |
*/ | |
static bool list_insertions_handler(app_timer_id_t restart_list_head) | |
{ | |
app_timer_id_t timer_id_old_head; | |
uint8_t user_id; | |
// Remember the old head, so as to decide if new compare needs to be set. | |
timer_id_old_head = m_timer_id_head; | |
user_id = m_user_array_size; | |
while (user_id--) | |
{ | |
timer_user_t * p_user = &mp_users[user_id]; | |
// Handle insertions of timers. | |
while ((restart_list_head != TIMER_NULL) || (p_user->first != p_user->last)) | |
{ | |
app_timer_id_t id_start; | |
timer_node_t * p_timer; | |
if (restart_list_head != TIMER_NULL) | |
{ | |
id_start = restart_list_head; | |
p_timer = &mp_nodes[id_start]; | |
restart_list_head = p_timer->next; | |
} | |
else | |
{ | |
timer_user_op_t * p_user_op = &p_user->p_user_op_queue[p_user->first]; | |
p_user->first++; | |
if (p_user->first == p_user->user_op_queue_size) | |
{ | |
p_user->first = 0; | |
} | |
id_start = p_user_op->timer_id; | |
p_timer = &mp_nodes[id_start]; | |
if ((p_user_op->op_type != TIMER_USER_OP_TYPE_START) || p_timer->is_running) | |
{ | |
continue; | |
} | |
p_timer->ticks_at_start = p_user_op->params.start.ticks_at_start; | |
p_timer->ticks_first_interval = p_user_op->params.start.ticks_first_interval; | |
p_timer->ticks_periodic_interval = p_user_op->params.start.ticks_periodic_interval; | |
p_timer->p_context = p_user_op->params.start.p_context; | |
if (m_rtc1_reset) | |
{ | |
p_timer->ticks_at_start = 0; | |
} | |
} | |
// Prepare the node to be inserted. | |
if ( | |
((p_timer->ticks_at_start - m_ticks_latest) & MAX_RTC_COUNTER_VAL) | |
< | |
(MAX_RTC_COUNTER_VAL / 2) | |
) | |
{ | |
p_timer->ticks_to_expire = ticks_diff_get(p_timer->ticks_at_start, m_ticks_latest) + | |
p_timer->ticks_first_interval; | |
} | |
else | |
{ | |
uint32_t delta_current_start; | |
delta_current_start = ticks_diff_get(m_ticks_latest, p_timer->ticks_at_start); | |
if (p_timer->ticks_first_interval > delta_current_start) | |
{ | |
p_timer->ticks_to_expire = p_timer->ticks_first_interval - delta_current_start; | |
} | |
else | |
{ | |
p_timer->ticks_to_expire = 0; | |
} | |
} | |
p_timer->ticks_at_start = 0; | |
p_timer->ticks_first_interval = 0; | |
p_timer->is_running = true; | |
p_timer->next = TIMER_NULL; | |
// Insert into list | |
timer_list_insert(id_start); | |
} | |
} | |
return (m_timer_id_head != timer_id_old_head); | |
} | |
/**@brief Function for updating the Capture Compare register. | |
*/ | |
static void compare_reg_update(app_timer_id_t timer_id_head_old) | |
{ | |
// Setup the timeout for timers on the head of the list | |
if (m_timer_id_head != TIMER_NULL) | |
{ | |
uint32_t ticks_to_expire = mp_nodes[m_timer_id_head].ticks_to_expire; | |
uint32_t pre_counter_val = rtc1_counter_get(); | |
uint32_t cc = m_ticks_latest; | |
uint32_t ticks_elapsed = ticks_diff_get(pre_counter_val, cc) + RTC_COMPARE_OFFSET_MIN; | |
if (!m_rtc1_running) | |
{ | |
// No timers were already running, start RTC | |
rtc1_start(); | |
} | |
cc += (ticks_elapsed < ticks_to_expire) ? ticks_to_expire : ticks_elapsed; | |
cc &= MAX_RTC_COUNTER_VAL; | |
rtc1_compare0_set(cc); | |
uint32_t post_counter_val = rtc1_counter_get(); | |
if ( | |
(ticks_diff_get(post_counter_val, pre_counter_val) + RTC_COMPARE_OFFSET_MIN) | |
> | |
ticks_diff_get(cc, pre_counter_val) | |
) | |
{ | |
// When this happens the COMPARE event may not be triggered by the RTC. | |
// The nRF51 Series User Specification states that if the COUNTER value is N | |
// (i.e post_counter_val = N), writing N or N+1 to a CC register may not trigger a | |
// COMPARE event. Hence the RTC interrupt is forcefully pended by calling the following | |
// function. | |
timer_timeouts_check_sched(); | |
} | |
} | |
else | |
{ | |
#if 1 /* leave the timer running so we can use the ticks for wall clock time */ | |
// No timers are running, stop RTC | |
rtc1_stop(); | |
#else | |
// Never match (or clear the interrupt) | |
rtc1_compare0_set(0); | |
#endif | |
} | |
} | |
/**@brief Function for handling changes to the timer list. | |
*/ | |
static void timer_list_handler(void) | |
{ | |
app_timer_id_t restart_list_head = TIMER_NULL; | |
uint32_t ticks_elapsed; | |
uint32_t ticks_previous; | |
bool ticks_have_elapsed; | |
bool compare_update; | |
app_timer_id_t timer_id_head_old; | |
// Back up the previous known tick and previous list head | |
ticks_previous = m_ticks_latest; | |
timer_id_head_old = m_timer_id_head; | |
// Get number of elapsed ticks | |
ticks_have_elapsed = elapsed_ticks_acquire(&ticks_elapsed); | |
// Handle list deletions | |
compare_update = list_deletions_handler(); | |
// Handle expired timers | |
if (ticks_have_elapsed) | |
{ | |
expired_timers_handler(ticks_elapsed, ticks_previous, &restart_list_head); | |
compare_update = true; | |
} | |
// Handle list insertions | |
if (list_insertions_handler(restart_list_head)) | |
{ | |
compare_update = true; | |
} | |
// Update compare register if necessary | |
if (compare_update) | |
{ | |
compare_reg_update(timer_id_head_old); | |
} | |
m_rtc1_reset = false; | |
} | |
/**@brief Function for enqueueing a new operations queue entry. | |
* | |
* @param[in] p_user User that the entry is to be enqueued for. | |
* @param[in] last_index Index of the next last index to be enqueued. | |
*/ | |
static void user_op_enque(timer_user_t * p_user, app_timer_id_t last_index) | |
{ | |
p_user->last = last_index; | |
} | |
/**@brief Function for allocating a new operations queue entry. | |
* | |
* @param[in] p_user User that the entry is to be allocated for. | |
* @param[out] p_last_index Index of the next last index to be enqueued. | |
* | |
* @return Pointer to allocated queue entry, or NULL if queue is full. | |
*/ | |
static timer_user_op_t * user_op_alloc(timer_user_t * p_user, app_timer_id_t * p_last_index) | |
{ | |
app_timer_id_t last; | |
timer_user_op_t * p_user_op; | |
last = p_user->last + 1; | |
if (last == p_user->user_op_queue_size) | |
{ | |
// Overflow case. | |
last = 0; | |
} | |
if (last == p_user->first) | |
{ | |
// Queue is full. | |
return NULL; | |
} | |
*p_last_index = last; | |
p_user_op = &p_user->p_user_op_queue[p_user->last]; | |
return p_user_op; | |
} | |
/**@brief Function for scheduling a Timer Start operation. | |
* | |
* @param[in] user_id Id of user calling this function. | |
* @param[in] timer_id Id of timer to start. | |
* @param[in] timeout_initial Time (in ticks) to first timer expiry. | |
* @param[in] timeout_periodic Time (in ticks) between periodic expiries. | |
* @param[in] p_context General purpose pointer. Will be passed to the timeout handler when | |
* the timer expires. | |
* @return NRF_SUCCESS on success, otherwise an error code. | |
*/ | |
static uint32_t timer_start_op_schedule(timer_user_id_t user_id, | |
app_timer_id_t timer_id, | |
uint32_t timeout_initial, | |
uint32_t timeout_periodic, | |
void * p_context) | |
{ | |
app_timer_id_t last_index; | |
timer_user_op_t * p_user_op = user_op_alloc(&mp_users[user_id], &last_index); | |
if (p_user_op == NULL) | |
{ | |
return NRF_ERROR_NO_MEM; | |
} | |
p_user_op->op_type = TIMER_USER_OP_TYPE_START; | |
p_user_op->timer_id = timer_id; | |
p_user_op->params.start.ticks_at_start = rtc1_counter_get(); | |
p_user_op->params.start.ticks_first_interval = timeout_initial; | |
p_user_op->params.start.ticks_periodic_interval = timeout_periodic; | |
p_user_op->params.start.p_context = p_context; | |
user_op_enque(&mp_users[user_id], last_index); | |
timer_list_handler_sched(); | |
return NRF_SUCCESS; | |
} | |
/**@brief Function for scheduling a Timer Stop operation. | |
* | |
* @param[in] user_id Id of user calling this function. | |
* @param[in] timer_id Id of timer to stop. | |
* | |
* @return NRF_SUCCESS on successful scheduling a timer stop operation. NRF_ERROR_NO_MEM when there | |
* is no memory left to schedule the timer stop operation. | |
*/ | |
static uint32_t timer_stop_op_schedule(timer_user_id_t user_id, app_timer_id_t timer_id) | |
{ | |
app_timer_id_t last_index; | |
timer_user_op_t * p_user_op = user_op_alloc(&mp_users[user_id], &last_index); | |
if (p_user_op == NULL) | |
{ | |
return NRF_ERROR_NO_MEM; | |
} | |
p_user_op->op_type = TIMER_USER_OP_TYPE_STOP; | |
p_user_op->timer_id = timer_id; | |
user_op_enque(&mp_users[user_id], last_index); | |
timer_list_handler_sched(); | |
return NRF_SUCCESS; | |
} | |
/**@brief Function for scheduling a Timer Stop All operation. | |
* | |
* @param[in] user_id Id of user calling this function. | |
*/ | |
static uint32_t timer_stop_all_op_schedule(timer_user_id_t user_id) | |
{ | |
app_timer_id_t last_index; | |
timer_user_op_t * p_user_op = user_op_alloc(&mp_users[user_id], &last_index); | |
if (p_user_op == NULL) | |
{ | |
return NRF_ERROR_NO_MEM; | |
} | |
p_user_op->op_type = TIMER_USER_OP_TYPE_STOP_ALL; | |
p_user_op->timer_id = TIMER_NULL; | |
user_op_enque(&mp_users[user_id], last_index); | |
timer_list_handler_sched(); | |
return NRF_SUCCESS; | |
} | |
/**@brief Function for handling the RTC1 interrupt. | |
* | |
* @details Checks for timeouts, and executes timeout handlers for expired timers. | |
*/ | |
void RTC1_IRQHandler(void) | |
{ | |
// Clear all events | |
NRF_RTC1->EVENTS_COMPARE[0] = 0; | |
// Check for expired timers | |
timer_timeouts_check(); | |
} | |
/**@brief Function for handling the SWI0 interrupt. | |
* | |
* @details Performs all updates to the timer list. | |
*/ | |
void SWI0_IRQHandler(void) | |
{ | |
timer_list_handler(); | |
} | |
static void overflow_init(void) | |
{ | |
APP_TIMER_OVERFLOW_COUNTER->POWER = 1; | |
APP_TIMER_OVERFLOW_COUNTER->TASKS_SHUTDOWN = 1; | |
APP_TIMER_OVERFLOW_COUNTER->TASKS_CLEAR = 1; | |
APP_TIMER_OVERFLOW_COUNTER->INTENCLR = -1; // disable all | |
APP_TIMER_OVERFLOW_COUNTER->MODE = TIMER_MODE_MODE_Counter; | |
APP_TIMER_OVERFLOW_COUNTER->BITMODE = TIMER_BITMODE_BITMODE_32Bit << TIMER_BITMODE_BITMODE_Pos; | |
APP_TIMER_OVERFLOW_COUNTER->PRESCALER = 0; | |
APP_TIMER_OVERFLOW_COUNTER->SHORTS = 0; | |
sd_ppi_channel_assign(APP_TIMER_PPI_CHANNEL_OVERFLOW, | |
&NRF_RTC1->EVENTS_OVRFLW, | |
&APP_TIMER_OVERFLOW_COUNTER->TASKS_COUNT); | |
sd_ppi_channel_enable_set(1 << APP_TIMER_PPI_CHANNEL_OVERFLOW); | |
APP_TIMER_OVERFLOW_COUNTER->TASKS_START = 1; | |
} | |
uint32_t app_timer_init(uint32_t prescaler, | |
uint8_t max_timers, | |
uint8_t op_queues_size, | |
void * p_buffer, | |
app_timer_evt_schedule_func_t evt_schedule_func) | |
{ | |
int i; | |
// Check that buffer is correctly aligned | |
if (!is_word_aligned(p_buffer)) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
// Check for NULL buffer | |
if (p_buffer == NULL) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
// Stop RTC to prevent any running timers from expiring (in case of reinitialization) | |
rtc1_stop(); | |
m_evt_schedule_func = evt_schedule_func; | |
// Initialize timer node array | |
m_node_array_size = max_timers; | |
mp_nodes = p_buffer; | |
for (i = 0; i < max_timers; i++) | |
{ | |
mp_nodes[i].state = STATE_FREE; | |
mp_nodes[i].is_running = false; | |
} | |
// Skip timer node array | |
p_buffer = &((uint8_t *)p_buffer)[max_timers * sizeof(timer_node_t)]; | |
// Initialize users array | |
m_user_array_size = APP_TIMER_INT_LEVELS; | |
mp_users = p_buffer; | |
// Skip user array | |
p_buffer = &((uint8_t *)p_buffer)[APP_TIMER_INT_LEVELS * sizeof(timer_user_t)]; | |
// Initialize operation queues | |
for (i = 0; i < APP_TIMER_INT_LEVELS; i++) | |
{ | |
timer_user_t * p_user = &mp_users[i]; | |
p_user->first = 0; | |
p_user->last = 0; | |
p_user->user_op_queue_size = op_queues_size; | |
p_user->p_user_op_queue = p_buffer; | |
// Skip operation queue | |
p_buffer = &((uint8_t *)p_buffer)[op_queues_size * sizeof(timer_user_op_t)]; | |
} | |
m_timer_id_head = TIMER_NULL; | |
m_ticks_elapsed_q_read_ind = 0; | |
m_ticks_elapsed_q_write_ind = 0; | |
NVIC_ClearPendingIRQ(SWI0_IRQn); | |
NVIC_SetPriority(SWI0_IRQn, SWI0_IRQ_PRI); | |
NVIC_EnableIRQ(SWI0_IRQn); | |
rtc1_init(prescaler); | |
overflow_init(); | |
m_ticks_latest = rtc1_counter_get(); | |
return NRF_SUCCESS; | |
} | |
uint32_t app_timer_create(app_timer_id_t * p_timer_id, | |
app_timer_mode_t mode, | |
app_timer_timeout_handler_t timeout_handler) | |
{ | |
int i; | |
// Check state and parameters | |
if (mp_nodes == NULL) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
if (timeout_handler == NULL) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
if (p_timer_id == NULL) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
// Find free timer | |
for (i = 0; i < m_node_array_size; i++) | |
{ | |
if (mp_nodes[i].state == STATE_FREE) | |
{ | |
mp_nodes[i].state = STATE_ALLOCATED; | |
mp_nodes[i].mode = mode; | |
mp_nodes[i].p_timeout_handler = timeout_handler; | |
*p_timer_id = i; | |
return NRF_SUCCESS; | |
} | |
} | |
return NRF_ERROR_NO_MEM; | |
} | |
/**@brief Function for creating a timer user id from the current interrupt level. | |
* | |
* @return Timer user id. | |
*/ | |
static timer_user_id_t user_id_get(void) | |
{ | |
timer_user_id_t ret; | |
STATIC_ASSERT(APP_TIMER_INT_LEVELS == 3); | |
switch (current_int_priority_get()) | |
{ | |
case APP_IRQ_PRIORITY_HIGH: | |
ret = APP_HIGH_USER_ID; | |
break; | |
case APP_IRQ_PRIORITY_LOW: | |
ret = APP_LOW_USER_ID; | |
break; | |
default: | |
ret = THREAD_MODE_USER_ID; | |
break; | |
} | |
return ret; | |
} | |
uint32_t app_timer_start(app_timer_id_t timer_id, uint32_t timeout_ticks, void * p_context) | |
{ | |
uint32_t timeout_periodic; | |
// Check state and parameters | |
if (mp_nodes == NULL) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
if ((timer_id >= m_node_array_size) || (timeout_ticks < APP_TIMER_MIN_TIMEOUT_TICKS)) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
if (mp_nodes[timer_id].state != STATE_ALLOCATED) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
// Schedule timer start operation | |
timeout_periodic = (mp_nodes[timer_id].mode == APP_TIMER_MODE_REPEATED) ? timeout_ticks : 0; | |
return timer_start_op_schedule(user_id_get(), | |
timer_id, | |
timeout_ticks, | |
timeout_periodic, | |
p_context); | |
} | |
uint32_t app_timer_stop(app_timer_id_t timer_id) | |
{ | |
// Check state and parameters | |
if (mp_nodes == NULL) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
if (timer_id >= m_node_array_size) | |
{ | |
return NRF_ERROR_INVALID_PARAM; | |
} | |
if (mp_nodes[timer_id].state != STATE_ALLOCATED) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
// Schedule timer stop operation | |
return timer_stop_op_schedule(user_id_get(), timer_id); | |
} | |
uint32_t app_timer_stop_all(void) | |
{ | |
// Check state | |
if (mp_nodes == NULL) | |
{ | |
return NRF_ERROR_INVALID_STATE; | |
} | |
return timer_stop_all_op_schedule(user_id_get()); | |
} | |
uint32_t app_timer_cnt_get(uint32_t * p_ticks) | |
{ | |
*p_ticks = rtc1_counter_get(); | |
return NRF_SUCCESS; | |
} | |
void app_timer_ticks(uint32_t *p_overflow, uint32_t *p_ticks) | |
{ | |
uint32_t overflow0, overflow1, counter; | |
APP_TIMER_OVERFLOW_COUNTER->TASKS_CAPTURE[0] = 1; // trigger capture | |
overflow0 = APP_TIMER_OVERFLOW_COUNTER->CC[0]; // before | |
counter = NRF_RTC1->COUNTER; | |
APP_TIMER_OVERFLOW_COUNTER->TASKS_CAPTURE[1] = 1; // trigger capture | |
overflow1 = APP_TIMER_OVERFLOW_COUNTER->CC[1]; // after | |
if (overflow0 != overflow1) | |
{ | |
/* overflow occurred (rare) | |
* we don't know if overflow1 changed before or after | |
* we sampled counter1, so we just sample again | |
*/ | |
counter = NRF_RTC1->COUNTER; | |
} | |
*p_overflow = overflow1; | |
*p_ticks = counter; | |
} | |
uint32_t app_timer_cnt_diff_compute(uint32_t ticks_to, | |
uint32_t ticks_from, | |
uint32_t * p_ticks_diff) | |
{ | |
*p_ticks_diff = ticks_diff_get(ticks_to, ticks_from); | |
return NRF_SUCCESS; | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. | |
* | |
* The information contained herein is property of Nordic Semiconductor ASA. | |
* Terms and conditions of usage are described in detail in NORDIC | |
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. | |
* | |
* Licensees are granted free, non-transferable use of the information. NO | |
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from | |
* the file. | |
* | |
*/ | |
/** @file | |
* | |
* @defgroup app_timer Application Timer | |
* @{ | |
* @ingroup app_common | |
* | |
* @brief Application timer functionality. | |
* | |
* @details It enables the application to create multiple timer instances based on the RTC1 | |
* peripheral. Checking for timeouts and invokation of user timeout handlers is performed | |
* in the RTC1 interrupt handler. List handling is done using a software interrupt (SWI0). | |
* Both interrupt handlers are running in APP_LOW priority level. | |
* | |
* @note When calling app_timer_start() or app_timer_stop(), the timer operation is just queued, | |
* and the software interrupt is triggered. The actual timer start/stop operation is | |
* executed by the SWI0 interrupt handler. Since the SWI0 interrupt is running in APP_LOW, | |
* if the application code calling the timer function is running in APP_LOW or APP_HIGH, | |
* the timer operation will not be performed until the application handler has returned. | |
* This will be the case e.g. when stopping a timer from a timeout handler when not using | |
* the scheduler. | |
* | |
* @details Use the USE_SCHEDULER parameter of the APP_TIMER_INIT() macro to select if the | |
* @ref app_scheduler is to be used or not. | |
* | |
* @note Even if the scheduler is not used, app_timer.h will include app_scheduler.h, so when | |
* compiling, app_scheduler.h must be available in one of the compiler include paths. | |
*/ | |
#ifndef APP_TIMER_H__ | |
#define APP_TIMER_H__ | |
#include <stdint.h> | |
#include <stdbool.h> | |
#include <stdio.h> | |
#include "app_error.h" | |
#include "app_util.h" | |
#include "compiler_abstraction.h" | |
#define APP_TIMER_OVERFLOW_COUNTER NRF_TIMER1 | |
#define APP_TIMER_PPI_CHANNEL_OVERFLOW 0 | |
#define APP_TIMER_CLOCK_FREQ 32768 /**< Clock frequency of the RTC timer used to implement the app timer module. */ | |
#define APP_TIMER_MIN_TIMEOUT_TICKS 5 /**< Minimum value of the timeout_ticks parameter of app_timer_start(). */ | |
#define APP_TIMER_NODE_SIZE 32 /**< Size of app_timer.timer_node_t (only for use inside APP_TIMER_BUF_SIZE()). */ | |
#define APP_TIMER_USER_OP_SIZE 24 /**< Size of app_timer.timer_user_op_t (only for use inside APP_TIMER_BUF_SIZE()). */ | |
#define APP_TIMER_USER_SIZE 8 /**< Size of app_timer.timer_user_t (only for use inside APP_TIMER_BUF_SIZE()). */ | |
#define APP_TIMER_INT_LEVELS 3 /**< Number of interrupt levels from where timer operations may be initiated (only for use inside APP_TIMER_BUF_SIZE()). */ | |
/**@brief Compute number of bytes required to hold the application timer data structures. | |
* | |
* @param[in] MAX_TIMERS Maximum number of timers that can be created at any given time. | |
* @param[in] OP_QUEUE_SIZE Size of queues holding timer operations that are pending execution. | |
* NOTE: Due to the queue implementation, this size must be one more | |
* than the size that is actually needed. | |
* | |
* @return Required application timer buffer size (in bytes). | |
*/ | |
#define APP_TIMER_BUF_SIZE(MAX_TIMERS, OP_QUEUE_SIZE) \ | |
( \ | |
((MAX_TIMERS) * APP_TIMER_NODE_SIZE) \ | |
+ \ | |
( \ | |
APP_TIMER_INT_LEVELS \ | |
* \ | |
(APP_TIMER_USER_SIZE + ((OP_QUEUE_SIZE) + 1) * APP_TIMER_USER_OP_SIZE) \ | |
) \ | |
) | |
/**@brief Convert milliseconds to timer ticks. | |
* | |
* @note This macro uses 64 bit integer arithmetic, but as long as the macro parameters are | |
* constants (i.e. defines), the computation will be done by the preprocessor. | |
* | |
* @param[in] MS Milliseconds. | |
* @param[in] PRESCALER Value of the RTC1 PRESCALER register (must be the same value that was | |
* passed to APP_TIMER_INIT()). | |
* | |
* @note When using this macro, it is the responsibility of the developer to ensure that the | |
* values provided as input result in an output value that is supported by the | |
* @ref app_timer_start function. For example, when the ticks for 1 ms is needed, the | |
* maximum possible value of PRESCALER must be 6, when @ref APP_TIMER_CLOCK_FREQ is 32768. | |
* This will result in a ticks value as 5. Any higher value for PRESCALER will result in a | |
* ticks value that is not supported by this module. | |
* | |
* @return Number of timer ticks. | |
*/ | |
#define APP_TIMER_TICKS(MS, PRESCALER)\ | |
((uint32_t)ROUNDED_DIV((MS) * (uint64_t)APP_TIMER_CLOCK_FREQ, ((PRESCALER) + 1) * 1000)) | |
/**@brief Timer id type. */ | |
typedef uint32_t app_timer_id_t; | |
/**@brief Application timeout handler type. */ | |
typedef void (*app_timer_timeout_handler_t)(void * p_context); | |
/**@brief Type of function for passing events from the timer module to the scheduler. */ | |
typedef uint32_t (*app_timer_evt_schedule_func_t) (app_timer_timeout_handler_t timeout_handler, | |
void * p_context); | |
/**@brief Timer modes. */ | |
typedef enum | |
{ | |
APP_TIMER_MODE_SINGLE_SHOT, /**< The timer will expire only once. */ | |
APP_TIMER_MODE_REPEATED /**< The timer will restart each time it expires. */ | |
} app_timer_mode_t; | |
/**@brief Macro for initializing the application timer module. | |
* | |
* @details It will handle dimensioning and allocation of the memory buffer required by the timer, | |
* making sure that the buffer is correctly aligned. It will also connect the timer module | |
* to the scheduler (if specified). | |
* | |
* @note This module assumes that the LFCLK is already running. If it isn't, the module will | |
* be non-functional, since the RTC will not run. If you don't use a softdevice, you'll | |
* have to start the LFCLK manually. See the rtc_example's lfclk_config() function | |
* for an example of how to do this. If you use a softdevice, the LFCLK is started on | |
* softdevice init. | |
* | |
* | |
* @param[in] PRESCALER Value of the RTC1 PRESCALER register. This will decide the | |
* timer tick rate. Set to 0 for no prescaling. | |
* @param[in] MAX_TIMERS Maximum number of timers that can be created at any given time. | |
* @param[in] OP_QUEUES_SIZE Size of queues holding timer operations that are pending execution. | |
* @param[in] SCHEDULER_FUNC Pointer to scheduler event handler | |
* | |
* @note Since this macro allocates a buffer, it must only be called once (it is OK to call it | |
* several times as long as it is from the same location, e.g. to do a reinitialization). | |
*/ | |
/*lint -emacro(506, APP_TIMER_INIT) */ /* Suppress "Constant value Boolean */ | |
#define APP_TIMER_INIT(PRESCALER, MAX_TIMERS, OP_QUEUES_SIZE, SCHEDULER_FUNC) \ | |
do \ | |
{ \ | |
static uint32_t APP_TIMER_BUF[CEIL_DIV(APP_TIMER_BUF_SIZE((MAX_TIMERS), \ | |
(OP_QUEUES_SIZE) + 1), \ | |
sizeof(uint32_t))]; \ | |
uint32_t ERR_CODE = app_timer_init((PRESCALER), \ | |
(MAX_TIMERS), \ | |
(OP_QUEUES_SIZE) + 1, \ | |
APP_TIMER_BUF, \ | |
SCHEDULER_FUNC); \ | |
APP_ERROR_CHECK(ERR_CODE); \ | |
} while (0) | |
/**@brief Function for initializing the timer module. | |
* | |
* @note Normally initialization should be done using the APP_TIMER_INIT() macro, as that will both | |
* allocate the buffers needed by the timer module (including aligning the buffers correctly, | |
* and also take care of connecting the timer module to the scheduler (if specified). | |
* | |
* @param[in] prescaler Value of the RTC1 PRESCALER register. Set to 0 for no prescaling. | |
* @param[in] max_timers Maximum number of timers that can be created at any given time. | |
* @param[in] op_queues_size Size of queues holding timer operations that are pending | |
* execution. NOTE: Due to the queue implementation, this size must | |
* be one more than the size that is actually needed. | |
* @param[in] p_buffer Pointer to memory buffer for internal use in the app_timer | |
* module. The size of the buffer can be computed using the | |
* APP_TIMER_BUF_SIZE() macro. The buffer must be aligned to a | |
* 4 byte boundary. | |
* @param[in] evt_schedule_func Function for passing timeout events to the scheduler. Point to | |
* app_timer_evt_schedule() to connect to the scheduler. Set to NULL | |
* to make the timer module call the timeout handler directly from | |
* the timer interrupt handler. | |
* | |
* @retval NRF_SUCCESS Successful initialization. | |
* @retval NRF_ERROR_INVALID_PARAM Invalid parameter (buffer not aligned to a 4 byte | |
* boundary or NULL). | |
*/ | |
uint32_t app_timer_init(uint32_t prescaler, | |
uint8_t max_timers, | |
uint8_t op_queues_size, | |
void * p_buffer, | |
app_timer_evt_schedule_func_t evt_schedule_func); | |
/**@brief Function for creating a timer instance. | |
* | |
* @param[out] p_timer_id Id of the newly created timer. | |
* @param[in] mode Timer mode. | |
* @param[in] timeout_handler Function to be executed when the timer expires. | |
* | |
* @retval NRF_SUCCESS Timer was successfully created. | |
* @retval NRF_ERROR_INVALID_PARAM Invalid parameter. | |
* @retval NRF_ERROR_INVALID_STATE Application timer module has not been initialized. | |
* @retval NRF_ERROR_NO_MEM Maximum number of timers has already been reached. | |
* | |
* @note This function does the timer allocation in the caller's context. It is also not protected | |
* by a critical region. Therefore care must be taken not to call it from several interrupt | |
* levels simultaneously. | |
*/ | |
uint32_t app_timer_create(app_timer_id_t * p_timer_id, | |
app_timer_mode_t mode, | |
app_timer_timeout_handler_t timeout_handler); | |
/**@brief Function for starting a timer. | |
* | |
* @param[in] timer_id Id of timer to start. | |
* @param[in] timeout_ticks Number of ticks (of RTC1, including prescaling) to timeout event | |
* (minimum 5 ticks). | |
* @param[in] p_context General purpose pointer. Will be passed to the timeout handler when | |
* the timer expires. | |
* | |
* @retval NRF_SUCCESS Timer was successfully started. | |
* @retval NRF_ERROR_INVALID_PARAM Invalid parameter. | |
* @retval NRF_ERROR_INVALID_STATE Application timer module has not been initialized, or timer | |
* has not been created. | |
* @retval NRF_ERROR_NO_MEM Timer operations queue was full. | |
* | |
* @note The minimum timeout_ticks value is 5. | |
* @note For multiple active timers, timeouts occurring in close proximity to each other (in the | |
* range of 1 to 3 ticks) will have a positive jitter of maximum 3 ticks. | |
* @note When calling this method on a timer which is already running, the second start operation | |
* will be ignored. | |
*/ | |
uint32_t app_timer_start(app_timer_id_t timer_id, uint32_t timeout_ticks, void * p_context); | |
/**@brief Function for stopping the specified timer. | |
* | |
* @param[in] timer_id Id of timer to stop. | |
* | |
* @retval NRF_SUCCESS Timer was successfully stopped. | |
* @retval NRF_ERROR_INVALID_PARAM Invalid parameter. | |
* @retval NRF_ERROR_INVALID_STATE Application timer module has not been initialized, or timer | |
* has not been created. | |
* @retval NRF_ERROR_NO_MEM Timer operations queue was full. | |
*/ | |
uint32_t app_timer_stop(app_timer_id_t timer_id); | |
/**@brief Function for stopping all running timers. | |
* | |
* @retval NRF_SUCCESS All timers were successfully stopped. | |
* @retval NRF_ERROR_INVALID_STATE Application timer module has not been initialized. | |
* @retval NRF_ERROR_NO_MEM Timer operations queue was full. | |
*/ | |
uint32_t app_timer_stop_all(void); | |
/**@brief Function for returning the current value of the RTC1 counter. | |
* | |
* @param[out] p_ticks Current value of the RTC1 counter. | |
* | |
* @retval NRF_SUCCESS Counter was successfully read. | |
*/ | |
uint32_t app_timer_cnt_get(uint32_t * p_ticks); | |
/**@brief Return the number of times the timer has overflowed and the current counter value | |
* | |
* @param[out] p_overflow Number of times the RTC counter has overflowed | |
* @param[out] p_ticks Current value of RTC counter | |
*/ | |
void app_timer_ticks(uint32_t *p_overflow, uint32_t *p_ticks); | |
/**@brief Function for computing the difference between two RTC1 counter values. | |
* | |
* @param[in] ticks_to Value returned by app_timer_cnt_get(). | |
* @param[in] ticks_from Value returned by app_timer_cnt_get(). | |
* @param[out] p_ticks_diff Number of ticks from ticks_from to ticks_to. | |
* | |
* @retval NRF_SUCCESS Counter difference was successfully computed. | |
*/ | |
uint32_t app_timer_cnt_diff_compute(uint32_t ticks_to, | |
uint32_t ticks_from, | |
uint32_t * p_ticks_diff); | |
#endif // APP_TIMER_H__ | |
/** @} */ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment